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Abstract

We consider statistical inference for parameters defined by general estimating equa-

tions under the covariate shift transfer learning. Different from the commonly used den-

sity ratio weighting approach, we undertake a set of formulations to make the statistical

inference semiparametric efficient with simple inference. It starts with re-constructing

the estimation equations to make them Neyman orthogonal, which facilitates more ro-

bustness against errors in the estimation of two key nuisance functions, the density

ratio and the conditional mean of the moment function. We present a divergence-based

method to estimate the density ratio function, which is amenable to machine learning

algorithms including the deep learning. To address the challenge that the conditional

mean is parametric-dependent, we adopt a nonparametric multiple-imputation strategy

that avoids regression at all possible parameter values. With the estimated nuisance

functions and the orthogonal estimation equation, the inference for the target parame-

ter is formulated via the empirical likelihood without sample splittings. We show that

the proposed estimator attains the semiparametric efficiency bound, and the inference

can be conducted with the Wilks’ theorem. The proposed method is further evaluated

by simulations and an empirical study on a transfer learning inference for ground-level

ozone pollution.

1 Introduction

The past decades have witnessed rapid development of statistical learning techniques in

many fields of applications. Most of the techniques rely on a commonly adopted model

where the training and testing data are sampled from the same distribution. However, this

homogeneity between the training and testing data is frequently violated in practice since

diverse datasets are increasingly available. An enduring challenge in statistical inference is

to generalize an inference procedure from one data domain to another to achieve the goal

of generalization and fully use of data information.

Transfer learning (TL) has become an active and promising area in dealing with dis-

tribution mismatch problems and has achieved considerable success in a wide range of
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applications, such as computer vision (Kulis et al., 2011), bioinformatics (Hanson et al.,

2020) and precision medicine (Mo et al., 2021). See Zhuang et al. (2020) for reviews.

Suppose that the distributions for the source and target samples are PX,Y and QX,Y ,

respectively, where X is the vector of covariates and Y is the response or outcome. Two

popular settings of TL that have been considered in the literature are posterior drift and

covariate shift. The posterior drift TL assumes the marginal distributions of covariates are

invariant, while the conditional distributions PY |X and QY |X may differ. On the other

hand, covariate shift TL is for the situations where the marginal covariate distributions

may differ, while a common conditional distribution is shared across the two domains.

Recently, there has been a growing literature on statistical inference on the posterior drift

TL, including the classification problems (Reeve et al., 2021), the linear and generalized

linear models (Li et al., 2022b), and the Gaussian graphical models (Li et al., 2023). Unlike

the posterior drift, the covariate shift TL has responses inaccessible to the target sample.

Such a setting is well motivated by various real-world scenarios, where the same study is

conducted with different covariate populations while the law that governs the input-output

determination is kept across the domains. For instance, in medical data analysis (Guan

and Liu, 2021), covariate shift is reasonable for health records across different patients, and

clinical outcomes are usually scarce because of ethical concerns. Despite its importance in

applications, there has been a limited amount of literature on the statistical theory on the

covariate shift TL relative to those for the posterior shift TL.

In this paper, we consider statistical inference on parameters defined via general esti-

mating equations (GEE) in the context of the covariate shift TL. The GEE is a general

framework for semi-parametric inference, and is appealing for requiring less stringent distri-

butional assumptions on the data, and yet can encompass a wide range of model structures

and parameters. The goal is to efficiently estimate and make inference for a p-dimensional

parameter θ0 defined through EQtgpX, Y,θ0qu “ 0. Inference for θ0 under this situation

is more challenging than the conventional GEE problems because on one hand, Y is avail-

able in the target sample. On the other hand, directly using the sample from the source

population P leads to biased estimates since P ‰ Q in general.

1.1 Related works

We review related works so as to situate our study within a broader context and discuss

the gaps between existing results and the goal of this paper.
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Covariate shift The covariate shift, as an important scenario of TL, is also called the

domain adaptation (Pan and Yang, 2010) and has been investigated in the machine learn-

ing literature, such as Gretton et al. (2009) and Ryan and Culp (2015), with a focus to

correct for estimating bias in the empirical risk minimization or model selection due to the

covariate shift. The standard strategy adopted in the existing literature is the so-called

importance reweighting with the density ratio between QX and PX ; see Kouw and Loog

(2019) and the references therein. The covariate shift problem has also been studied from

the perspectives of statistical methodologies and theories. Lei and Candès (2021) studied

conformal prediction under covariate shift. Non-parametric classification under covariate

shift is explored in Kpotufe and Martinet (2021) and non-parametric regression is inves-

tigated in Ma et al. (2023). Cai et al. (2023) considered contextual multi-armed bandits

under the covariate shift. In comparison, the semi-parametric inference under the covariate

shift is less-explored.

Missing data and causal inference The covariate shift TL is closely related to missing

data problems and causal inference, since the assumption PY |X “ QY |X is equivalent to

the missing at random (MAR) condition. The sample estimating equation employed in this

work shares a similar form as the augmented inverse-probability weighted (AIPW) estima-

tor (Robins et al., 1994) and its variants (e.g., Rotnitzky et al., 2012 and Chernozhukov

et al., 2018). Both the AIPW method and our proposed method require the estimation of

the conditional mean functionmpX,θq “ EtgpZ,θq|Xu. A key distinction of the GEE con-

sidered in this paper from the aforementioned literature is that their estimand is commonly

linear in gpZ,θq, for example, the average treatment effect (ATE) problem corresponds

to the estimating function gpZ,θq “ Y ´ θ, while we are interested in more general cases

where θ may depend nonlinearly on gpZ,θq, such as the quantile and quantile regression.

For the nonlinear cases, to estimate the conditional mean function mpX,θq, one has to

regress gpZ,θq on X repeatedly for each θ during its optimization, which can be too com-

putationally intensive to be practical, especially for some time consuming optimizations

requiring thousands of iterations before convergence.

Recently, Chen et al. (2024) considered the GEE problem with missing data and pro-

posed a neural network based inverse probability weighting estimator. Compared with Chen

et al. (2024), our methods have two appealing advantages. One is being doubly robust in

that our estimator is consistent if either the density ratio or the conditional mean function

is consistently estimated. The other important feature is that we can conveniently employ

Wilks’ theorem for the inference of θ0, while Chen et al. (2024) has to resort to a Bootstrap

method to facilitate the inference. More detailed comparisons are presented in Section 6.1.
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Empirical likelihood The empirical likelihood (EL) approach introduced in Owen (1988)

has been demonstrated to be powerful for statistical inference of GEEs, for having appeal-

ing properties such as Wilks’ theorem (Qin and Lawless, 1994) and Bartlett correction

(Chen and Cui, 2007). When an unknown nuisance function is present in the estimation

equations, Hjort et al. (2009) and Wang and Chen (2009) showed that asymptotically the

empirical likelihood ratio statistic with a plugged-in estimate of the nuisance function can

be weighted-sum-of-χ2 distributed, which is non-pivotal, and a bootstrap procedure has to

be used to approximate the distribution of the EL ratio. Bravo et al. (2020) proposed a

two-step procedure for empirical likelihood inference of semi-parametric models, employing

a modified sample estimating function, which leads to an asymptotically χ2 distributed EL

ratio statistic. They also considered the GEE with missing data to illustrate their method-

ology. However, nuisance functions in Bravo et al. (2020) are estimated with conventional

kernel smoothing whose performance may deteriorate with increase of dimensionality. In

our proposal, the nuisance functions are estimated in a more flexible way that accommo-

dates modern ML algorithms.

1.2 Our contributions

The investigation in this work contributes to several aspects.

First, we construct a modified moment function for the GEE inference in the presence of

covariate shift, which has the advantage of being Neyman orthogonal (Neyman, 1959) that

permits elimination of the first-order effect of the nuisance function estimation, including

a density ratio function rpxq and a conditional moment function mpx,θq.

The second contribution is in proposing a novel estimation methods for the two nuisance

functions, which both enable the use of flexible nonparametric tools, including the linear

sieves and generic black-box machine learning algorithms. The density ratio function is es-

timated by a divergence minimization approach. The estimation of the conditional moment

function mpx,θq is more challenging since it requires estimating the nuisance for infinitely

many θ. To tackle such a problem, we employ a multiple imputation approach which

bypasses the involvement of the parameter θ and just needs to estimate the conditional

density ppy|Xq. Instead of the conventional kernel smoothing estimator, novel estimation

methods for the density ratio and the conditional density are presented, which can utilize

a broad array of nonparametric methods.

Thirdly, by employing the EL method, the proposed estimation is shown to be both

doubly robust and semi-parametric efficient. Different from the double machine learning

approach, the construction of the sample estimating function used for the EL does not re-
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quire sample splitting. Furthermore, the log EL ratio statistics admits the Wilks’ theorem

which greatly facilitates the inference. For comparison, we also investigate the theoretical

properties of density ratio weighting (DRW) estimation, which is commonly adopted in

covariate shift problems. It is found that the DRW not only requires more stringent condi-

tions than the proposed method to attain the same asymptotic variance, but also make the

EL ratio statistics asymptotically weighted χ2-distributed, which makes the subsequent in-

ference tedious. We also discuss a growing dimension scenario, where the nuisance functions

are estimated with the deep neural networks to circumvent the curse of dimensionality.

1.3 Orginization

The paper is organized as follows. Section 2 describes the setup of the GEE problem with the

covariate shift TL. In Section 3 the orthogonal moment equations are constructed. Section

4 discusses the estimation of the two nuisance functions and establishes their theoretical

properties. The inference with the EL is presented in Section 5, where the scenario with a

growing dimension is also investigated. In we discuss comparisons between our study and

some related works. Section 7 and 8 report numerical experiment results and a case study

on ground-level ozone pollution, respectively. Finally, concluding discussions are given in

Section 9.

2 Notation and problem setup

We first introduce notations used in this study. We use 1pAq as the indicator function of

an event A. For any vector v “ pv1, ¨ ¨ ¨ , vdqT, let vb2 “ vvT and }v}p denote its Lp norm.

For a function f : X Ñ R, its supreme is denoted by }f}8 “ supxPX fpxq, and its Lp-norm

under a distribution F is denoted by }f}LppF q “ pEF |fpXq|pq1{p for any p ě 1. For two

sequences of positive numbers tanu and tbnu, we write an À bn if there exists a positive

constant C such that an ď Cbn.

Suppose a source sample DS has n independently and identically distributed (i.i.d.)

observations Z1, . . . ,Zn from a source population Z „ P “ PX ˆ PY |X where Zi “

pXT
i , Yiq

T consists of a d-dimensional covariate Xi and a response/label Yi. In this study,

we take the response variable as a scalar, as the case of multivariate responses can be

readily extended. The target population is Z „ Q “ QX ˆ QY |X . Observations of the

target sample DT are Xn`1, . . . ,XN with N “ n`m, while the responses Yi in DT are not

accessible. We introduce a binary variable δ to indicate whether the data is drawn from the

source (δ “ 0) or the target (δ “ 1) population. Let τ “ Ppδ “ 1q denote the proportion of
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target observations in the entire N observations, which is approximated by m{N .

Let θ “ pθ1, . . . , θpqT be a p-dimensional parameter taking values in Θ Ă Rp. For a set

of estimating equations tgipZ,θquri“1, the true parameter θ0 P Θ of the target population

is identified by the moment condition

EQtgpZ,θ0qu “ 0, (2.1)

where gpZ,θq “ pg1pZ,θq, . . . , grpZ,θqq
T with r ě p, which is necessary for identifying

θ0. If θ0 depends on QY , then without further distributional conditions it is impossible to

identify θ0 using the observed data due to the missingness of Y in DT .

Following the standard setting in the covariate shift literature, we assume that the

conditional distributions PY |X “ QY |X so that the information of Y can be transferred

from the source sample DS to the target sample DT , while the covariate distributions

PX and QX can differ. Our interest is the inference on θ0 with the combined sample

D “ DS Y DT under the covariate shift. The following conditions are required for the

sample and target populations.

Condition 1. (i) The covariate distributions PX and QX are absolutely continuous with

densities p0pxq and q0pxq supported on X , where X Ă Rd is compact. (ii) The conditional

distributions PY |X“x “ QY |X“x for every x P X .

Condition 2. (i) The parameter θ0 P intpΘq is the unique solution to the moment condition

EQtgpZ,θqu “ 0. (ii) EQtsupθPΘ }gpZ,θq}α2 u ă 8 for some α ą 2. (iii) The eigenvalues

of EQtgpZ,θqb2u are bounded away from zero and infinity. (iv) gpz,θq is continuously

differentiable in a neighborhood N of θ0 with EQtsupθPN }BgpZ,θq{BθT}2u ă 8, and

EQtBgpZ,θ0q{Bθu is of full rank.

Condition 1 summarizes assumptions about the sample and target populations under

the setting of covariate shift, where Condition 1 (ii) is necessary for inferring information

regarding the target domain from the source domain with accessible responses. Such a

condition is also required in semi-supervised learning problems (e.g., Ryan and Culp, 2015).

However, more challenging than the semi-supervised learning setup, we do not assume that

PX and QX are the same. Condition 2 for the estimating functions are standard regularity

conditions in the literature of general estimation equations (e.g., Newey and Smith, 2004).

3 Orthogonal moment functions

To address the problems caused by the covariate shift, the most common existing method is

via a density ratio weighting (DRW) approach, see Sugiyama et al. (2007) for an empirical
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risk minimization, Lei and Candès (2021) for conformal predictions, and Ma et al. (2023) for

the kernel ridge regression under the covariate shift. However, as will be revealed shortly,

the DRW method may not be suitable for the inference of the GEEs under the covariate

shift. We will propose to modify the DRW moment functions into an orthogonal moment

function that is more robust against the estimation error of the density ratio function.

Let r0pxq “ q0pxq{p0pxq be the density ratio of QX and PX . Using r0pXq to weigh for

Z from the source population, it holds that

EP tr0pXqgpZ,θqu “ EQ tgpZ,θqu ,

for any θ P Θ. The above relations reveal the central role of the density ratio function

in the identification of θ0 using the fully observed source sample. With a consistent prpxq,

we can obtain an estimate pθdrw from the following density ratio weighting (DRW) moment

function

g̃pZi,θ, prq “ prpXiqgpZi,θq for i “ 1, . . . , n, (3.1)

with either the empirical likelihood or the generalized method of moments approach.

While being the most popular and natural strategy for tackling the covariate shift, the

DRW method for the GEE problem has several drawbacks. First, the accuracy of pθdrw

crucially depends on that of pr, which may not be high quality when r0 has a complex

structure or the model of r0 is misspecified. A more important problem arises in the

inference as the estimation error of pr may have a first-order effect on pθdrw. This is because

the asymptotic distribution of pθdrw depends on that of the partial sum n´ 1
2
řn

i“1 rgpZi,θ0, prq,

which can be decomposed as

1
?
n

n
ÿ

i“1

rgpZi,θ0, prq “
1

?
n

n
ÿ

i“1

rgpZi,θ0, r0q `
1

?
n

n
ÿ

i“1

gpZi,θ0qtprpXiq ´ r0pXiqu :“ Tn ` Rn,

where Tn is usually asymptotically Gaussian, However, the second term Rn, which gath-

ers effects of the plugged-in estimator pr, may not have a weak limit, especially when pr

is obtained from some black-box machine learning methods. As shown in Section 6.1,
pθdrw requires quite strong conditions to be asymptotically normal. Even under such a

case, Theorem 6.1 shows that the EL ratio statistic using (3.1) as moment functions has a

weighed-χ2 limiting distribution, whose quantiles require a Bootstrap procedure to approx-

imate. See also Hjort et al. (2009) on the weighted-χ2 phenomenon associated with the EL

with plugged-in nuisance function estimators.

To alleviate the effect of estimation error in the nuisance function r0pxq, we opt for

adjusting the sample moment function g̃pZi,θ, prq by employing the first-order correction

advocated in the semiparametric literature such as Newey (1994). To illustrate the idea,
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let µpθ, prq “ EP tgpZ,θ, prqu and consider the first-order von Mises expansion

µpθ, r0q “ µpθ, prq `

ż

ψpz,θ, prqdP pzq ` R2ppr, r0q, (3.2)

where ψpz,θ, prq is the pathwise derivative of µpθ, rq at pr and R2ppr, r0q is the reminder term.

The expansion suggests that ψpz,θ, prq represents the plugged-in effect of pr, and the bias of

the weighted moment function g̃pZi,θ, prq, namely µpθ, prq ´ µpθ, r0q, can be corrected by

adding back
ş

ψpz,θ, prqdP pzq. As will be shown in Theorem 3.1, the pathwise derivative

satisfies
ż

ψpz,θ, prqdP pzq “ EQtm0pX,θqu ´ EP tm0pX,θqprpXqu.

With an estimated conditional mean function pmpx,θq using the source sample DS , the

above quantity can be approximated by
řN

i“1 ψ̃pWi,θ, pηq, whereWi “ pZi, δiq, pη “ ppr, pmq

and

ψ̃pWi,θ, pηq “
δi
τ
pmpXi,θq ´

1 ´ δi
1 ´ τ

pmpXi,θqprpXiq

for i “ 1, ¨ ¨ ¨ , N . Adding the adjustment ψ̃pWi,θ, pηq to the weighted moment function

g̃pZi,θ, prq leads to the following moment function

ΨpWi,θ, pηq “
1 ´ δi
1 ´ τ

prpXiqtgpZi,θq ´ pmpXi,θqu `
δi
τ
pmpXi,θq. (3.3)

A direct calculation verifies that EtΨpW ,θ0,η0qu “ 0 at η0 “ pr0,m0q, which implies

that ΨpWi,θ, pηq is a valid moment function for identifying θ0. We now establish the key as-

pects regarding the proposed moment function. Let F be the mixture of the source and tar-

get distributions. To derive the pathwise derivative of the functional r ÞÑ EF trgpW ,θ, rqu,

let tFτ , τ P r0, 1qu be a collection of regular parametric submodels satisfying F0 “ F

and the mean-square differentiability condition (see, e.g., Van der Vaart, 2000). The true

nuisance function under the submodel Fτ is denoted as ηpFτ q such that rpFτ q is the true

covariate density ratio under Fτ

Theorem 3.1. Under Conditions 1 and 2, the following results hold. (i) For any θ P Θ,

B

Bτ
EF trgpW ,θ, rpFτ qqu

ˇ

ˇ

ˇ

τ“0
“ EF tφpW ,θ,η0qS0pW qu , (3.4)

where η0px,θq “ pr0pxq,m0px,θqq and φpw,θ,ηq “ δ
pmpx,θq ´ 1´δ

1´prpxqmpx,θq.

(ii) Let Ψpw,θ,ηq “ rgpw,θ, rq `φpw,θ,ηq or equivalently,

Ψpw,θ,ηq “
1 ´ δ

1 ´ p
rpxqtgpz,θq ´ mpx,θqu `

δ

p
mpx,θq, (3.5)
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then B
BτEF tΨpW ,θ0,ηpFτ qqu

ˇ

ˇ

ˇ

τ“0
“ 0.

(iii) For any candidate ηpx,θq “ prpxq,mpx,θqq,

}EF tΨpW ,θ0,ηqu}1 ď }rpXq ´ r0pXq}L2pPXqp

r
ÿ

j“1

}mjpX,θq ´ m0jpX,θq}L2pPXqq.

Theorem 3.1 (i) shows the pathwise derivative function of EF trgpW ,θ, rpFτ qqu isφpw,θ,ηq,

reflecting the local effect the density ratio rpFτ q on EF trgpW ,θ, rpFτ qqu. The property
B

BτEF tΨpW ,θ0,ηpFτ qqu

ˇ

ˇ

ˇ

τ“0
“ 0 in Theorem 3.1 (ii) is the so-called Neyman orthogonality

(Neyman, 1959, Chernozhukov et al., 2018), which means the proposed sample moment

function ΨpW ,θ,ηq is orthogonal to the nuisance functions. Based on such a property,

perturbing the nuisance function η locally around η0 does not have the first-order effect

on EtΨpW ,θ0,ηqu. The Neyman orthogonality is an important notion in semi-parametric

inference as it enables the estimating function to be locally insensitive to the nuisance func-

tion. Compared with the debiased machine learning (DML) proposed by Chernozhukov

et al. (2018) which also utilized Neyman orthogonal moments, the problem considered here

is more challenging, as mpx,θq is parameter-dependent. Theorem 3.1 (iii) reveals that the

bias of the moment functions EtΨpW ,θ0,ηqu is bounded by the product of the L2 norms

of the estimation errors of the two nuisance functions, which is related to the double ro-

bustness property introduced by Robins et al. (1994) for the augmented inverse probability

weighting (AIPW) estimator.

4 Estimation of nuisance functions

Given the important roles played by the two nuisance functions rpxq and mpx,θq, this

section proposes estimators of the two nuisance functions and discuss their theoretical

properties.

4.1 Density ratio estimation

We first present estimators to the density ratio r. Conventional approaches, such as the ker-

nel smoothing or the classification-based methods, typically estimate the density functions

of the target domain (numerator) and the source domain (denominator), respectively, to

form the ratio estimator. However, such density ratio estimators can be quite unstable when

the dimension is large or the denominator density is close to zero. We take an approach

that directly estimate the density ratio based on the dual characteristic of the ϕ-divergence,

which can be solved via an empirical risk minimization problem and can accommodates a

variety of machine learning algorithms.
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For any two distributions P and Q with densities p0 and q0 and suppose that P is

absolutely continuous with respect to Q, their ϕ-divergence is

DϕpQ}P q “

ż

X
ϕ

ˆ

q0pxq

p0pxq

˙

p0pxqdx, (4.1)

where ϕ : R` Ñ R is a convex and lower semicontinuous function. Different choices of

ϕ lead to different divergences, such as the KL divergence for ϕpuq “ u log u, the squared

Hellinger distance for ϕpuq “ p
?
u´1q2, and the Pearson’s χ2-divergence for ϕpuq “ pu´1q2.

See Sason and Verdú (2016) for more examples. Moreover, the class of the Cressie-Read

power divergence can be represented as ϕ-divergences as shown in Maji et al. (2019).

Let ϕ˚pvq “ supuPRtuv ´ ϕpuqu be the Fenchel dual function of ϕ. The dual represen-

tation theorem (Rockafellar, 1997) implies that

DϕpQ}P q “ sup
f :XÑDompϕ˚q

tEQpfq ´ EP pϕ˚pfqqu

“ EQpf0q ´ EP pϕ˚pf0qq , (4.2)

where Dompϕ˚q denotes the domain of ϕ˚, and the supreme is attained at f0pxq “ ϕ1
´

q0pxq

p0pxq

¯

“

ϕ1 pr0pxqq. For each ϕ-function, we define

ℓ1,ϕprq “ ϕ˚tϕ1prqu and ℓ2,ϕprq “ ϕ1prq. (4.3)

Then the relationship (4.2) induces an identification condition for the density ratio r0 as

presented in the following lemma.

Lemma 4.1. For any convex and lower semicontinuous function ϕ : R` Ñ R, the true

density ratio satisfies

r0 “ argmin
rPF

Lϕprq with Lϕprq “ EP tℓ1,ϕprqu ´ EQtℓ2,ϕprqu, (4.4)

where the candidate class F is any class of nonnegative functions that contains r0.

The proof of the above lemma is presented in the supplementary material (SM). For

each given ϕ function, r0 can be uniquely determined from the population objective func-

tion (4.4). Table 1 lists some examples of commonly used divergence, along with the

corresponding Fenchel conjugate function ϕ˚ and the objective functions ℓ1,ϕ and ℓ2,ϕ.

With the two samples from P and Q, the density ratio r0 can be estimated with the

sample objective function obtained by replacing the expectations in (4.4) with the corre-

sponding empirical averages. The function class F in (4.4) is required to contain the true

density ratio r0, whose functional form is generally unknown in practice. As a practical
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Table 1. Examples of ϕ-divergence, the associated Fenchel conjugate and the objective
functions.

Divergence ϕpuq ϕ˚pvq ℓ1,ϕprq ℓ2,ϕprq

Kullback-Leibler u logpuq exppv ´ 1q r logprq ` 1

Reverse KL ´ logpuq ´1 ´ logp´vq logprq ` 1 ´r´1

Pearson χ2 pu ´ 1q2 v2{4 ` v r2 ´ 1 2pr ´ 1q

Squared Hellinger p
?
u ´ 1q2 v{pv ´ 1q r

1
2 ´ 1 1 ´ r´ 1

2

surrogate of F , we use a candidate class FN which may not exactly contain r0 but has the

universal approximation ability as described in Condition 4. Such a requirement can be

satisfied by the linear sieves and numerous machine learning methods. The density ratio

estimator pr is given by

pr “ argmin
rPFN

#

1

n

n
ÿ

i“1

ℓ1,ϕtrpXiqu ´
1

m

N
ÿ

i“n`1

ℓ2,ϕtrpXiqu

+

. (4.5)

It is noted that we not only obtain the estimator pr, but also an estimate of the divergence

DϕpQ}P q by the sample objective function with pr, which reveals the discrepancy of the

source and the target populations. The procedure applies to any ϕ-divergence introduced

by different choices of ϕ. For example, choosing ϕpuq “ u logpuq corresponds to the KL-

divergence in Table 1 such that

pr “ argmin
rPFN

#

1

n

n
ÿ

i“1

rpXiq ´
1

m

N
ÿ

i“n`1

logtrpXiqu

+

. (4.6)

Since we have formulated the estimation for r0 into an empirical risk minimization prob-

lem, a variety of computational methods for the optimization can be applied. If the can-

didate function space FN is convex, then problem (4.6) is a convex programming problem,

as was demonstrated in Nguyen et al. (2010) for FN being the reproducing kernel Hilbert

space (RKHS). For more general nonparametric function classes such as the deep neural

networks (DNN), the optimization can be conducted via efficient computational algorithms

such as the stochastic gradient descent. We advocate the use of the DNNs in the scenario of

large-scale data, since the DNNs are more amenable to parallel computations (Goodfellow

et al., 2016). Furthermore, compared with the RKHS employed in Nguyen et al. (2010),

the DNNs also enjoyed the advantage of adaptivity to unknown low-dimensional structures

of the underlying function, thus mitigating the curse of dimensionality, as will be discussed

in Section 5.2.

Now we study the L2-estimation error of the proposed density ratio estimator by first

presenting the results for the Hölder function class.
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Definition 1. Let β “ tβu ` r ą 0, r P p0, 1s where tβu denotes the largest integer strictly

smaller than β. For a finite constant B ą 0 and a compact region X Ă Rd, the Hölder

function class

HβpX , Bq “

"

f : X Ñ R, max
}α}1ďtβu

}Bαf}8 ď B, max
}α}1“tβu

sup
x1‰x2PX

Bαfpx1q ´ Bαfpx2q

}x1 ´ x2}r2
ď B

*

,

where Bα “ Bα1 ¨ ¨ ¨ Bαd with α “ pα1, ¨ ¨ ¨ , αdqT P Nd and }α}1 “
řd

i“1 αi.

Condition 3. There exist constants B1 ą 0 and β1 ě 1 such that the target function

r0 P Hβ1pX , B1q.

Condition 4. Let the pseudo-dimension (see Pollard, 1990) of FN be PdimpFN q, then (i)

PdimpFN q logpNq “ opNq; and (ii) there exists a constant c2 ą 0 such that for large enough

n, infrPFN
}r ´ r0}8 ď c2PdimpFN q´

β1
d . (iii) There exists a positive constant M1 such that

}r}8 ď M1 and }ℓ2
i,ϕprq}8 ď M1 for i “ 1, 2 and for every r P FN .

The above two conditions are imposed on the true density ratio r0 and the candidate

function class FN , respectively. Condition 3 characterizes the smoothness of r0, as com-

monly imposed in nonparametric function estimation. Condition 4 restricts the complexity

of FN and assumes the approximation error infrPFN
}r ´ r0}8 converges to 0 with the in-

crease of the pseudo-dimension PdimpFN q. Such a condition can be satisfied by various

nonparametric function classes, including the linear sieves (Chen, 2007), such as the splines

and the wavelets, and also the many machine learning methods, for example, the deep neu-

ral networks (Jiao et al., 2023). Condition 4 (iii) ensures that every function r in FN as well

as the second derivative of ℓi,ϕprq are bounded by M1, which can be practically achieved

by a truncation operation. With the above conditions, we have the following result for the

estimation error of the proposed estimator r̂. To quantity the estimation performance, we

define empirical L2 error of pr as

EN pprq “ rN´1
N
ÿ

i“1

tprpXiq ´ r0pXiqu
2
s1{2. (4.7)

Theorem 4.1. Under Conditions 1, 3, and 4, there exists a positive constant C1 such that

with probability at least 1 ´ 2e´t, for N large enough and any t ą 0,

EN pprq ď C1

˜

c

PdimpFN q logpNq

N
` inf

rPFN

}r ´ r0}8 `

c

t

N

¸

. (4.8)

The theorem provides the non-asymptotic estimation error bound for pr. The proof

of the theorem is presented in Section B.2 of the SM, which is built on a scale-sensitive

localization theory (Koltchinskii, 2011) to derive the tight bounds on the estimation errors.
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In the proof of Theorem 4.1, we also show that the population L2 error of pr can be bounded

by half of the right-hand side of (4.8) with high probability, as a consequence of Talagrand’s

concentration The first two terms of the bounds in (4.8) correspond to the stochastic error

determined by the complexity PdimpFN q and the approximation error infrPFN
}r ´ r0}8,

respectively. Under Condition 4 (ii), the second term can be bounded by PdimpFN q´
β1
d .

Therefore, there is a trade-off between the first two terms on the right-hand side of (4.8)

with respect to the increase of the complexity of the candidate class FN . Balancing the

first two terms, it can be seen that PdimpFN q “ OpN
´ d

2β1`d q is the optimal choice of

pseudo-dimension up to some logpNq factor. In practice, while the underlying smoothness

β1 is generally unknown, we can specify the optimal PdimpFN q with the cross-validation

method. With such the optimal specification of PdimpFN q, the following convergence rate

of pr can be obtained.

Corollary 4.1. Under Conditions 1, 3, and 4, and taking PdimpFN q “ OpN
´ d

2β1`d q, we

have

EN pprq “ Op

ˆ

N
´

β1
2β1`d log

1
2 pNq

˙

.

Theorem 4.1 establishes the convergence rate of the proposed density ratio estimator.

We note that theN
´

β1
2β1`d is the minimax lower bound for the density estimation problem as

shown in Stone (1982) and Yang and Barron (1999). However, the density ratio estimation

is a harder problem than the density estimation as the former is a two-sample problem. In

the next theorem, the minimax lower bound for the density ratio estimation is derived.

Theorem 4.2. Let Mdpβ1, B1q “
␣

pP,Qq : dQ{dP “ r0 P Hβ1pX , B1q
(

, then there exists a

positive constant c1 such that

inf
r̃

sup
pP,QqPMdpβ,Bq

Et}r ´ r0}L2pP qu ě c1N
´

β1
2β1`d ,

for large enough N , where the infimum is taken over all estimators.

The above theorem indicates that the minimax lower bound for the density ratio estima-

tion is the same as that for the density estimation. It is worth noting that the convergence

rate provided in Theorem 4.1 matches the lower bound up to a logpNq factor, meaning that

the proposed estimator nearly attains the minimax bound. Moreover, as will be discussed in

Section 5.2, if the true function r0 has a low-dimensional support, then the estimation error

of pr estimated with the DNNs can adaptively achieve a faster convergence rate depending

on the low-dimensional structure instead of the nominal dimension d, thus alleviating the

curse of dimensionality.
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4.2 Conditional density estimation and multiple imputation

The goal is to estimate the conditional moment mpX,θq “ EtgpZ,θq|Xu. For a given

θ, it can be simply estimated by regressing gpZ,θq on X. However, it has to be con-

ducted repeatedly in search of the optimal solution. In this section, we propose a multiple

imputation method to bypass the issue.

To present the multiple imputation procedure, we first need to estimate the conditional

density function pY |X , then using it to conduct imputations for the responses of both the

source and the target samples. The conditional density estimation is a conventional topic

in statistics, whose development includes the kernel density estimation (Hall et al., 2004),

the nearest neighbor (Li et al., 2022a), and the regression methods (Izbicki and Lee, 2017).

However, the existing methods are mostly restricted to certain nonparametric forms, such

as the kernel or the orthogonal basis functions. We propose a new scheme for conditional

density estimation which is flexible enough to accommodate a wide range of nonparametric

methods.

We note that the conditional density function is essentially a density ratio between

the joint density p0py,xq over the marginal density p0pxq. However, the ϕ-divergence

based density ratio estimation method described in Section 4.1 requires the support of the

denominator density covers that of the numerator density to ensure the ϕ-divergence is well

defined. For this reason, we express the conditional density as

p0py|xq “
p0py,xq

p0pxq
“

p0py,xq

p0pxqp̃0pyq
p̃0pyq “: r̃0py,xqp̃0pyq, (4.9)

where r̃0py,xq is an auxiliary density ratio function between the source population PX,Y and

an auxiliary population P̃X,Ỹ “ PXˆP̃Y , where P̃Y is supported on R with a known density

p̃0pyq. Such a transformation ensures that P̃X,Ỹ is absolutely continuous with respect to the

the source distribution PX,Y . Hence, the ϕ-divergence based approach for estimating the

auxillary density ratio r̃0py,xq can be applied. Specifically, let GN be a pd` 1q-dimensional

candidate function class that satisfies Condition 6 below, then the density ratio r̃0py,xq

can be estimated via the following sample criterion

pr̃py,xq “ argmin
pPGN

#

1

n

n
ÿ

i“1

ℓ1,ϕtppỸi,Xiqu ´
1

n

n
ÿ

i“1

ℓ2,ϕtppYi,Xiqu

+

, (4.10)

where tỸiu
n
i“1 are independently sampled from P̃Y and are independent of tpXi, Yiquni“1.

With pr̃py,xq, the conditional density is estimated by

ppY |Xpy|xq “ pr̃py,xqp̃0pyq. (4.11)

This facilitates the multiple imputation of Wang and Chen (2009) for the estimation of

mpx,θq.
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Using the conditional density estimator ppY |Xpy|xq, for any Xi P tXlu
N
l“1, we generate

a sample tỸ ν
i uκν“1 independently from p̂Y |Xpy|Xiq as advocated by the multiple nonpara-

metric imputation of Wang and Chen (2009). Then, the imputed moment function is

pmκpXi,θq “
1

κ

κ
ÿ

ν“1

gpXi, Ỹ
ν
i ,θq.

The most prominent advantage of such an imputation-based estimator is that it does not

depend on any particular θ, and is in sharp contrast to the regression approach which shall

regress gpZ,θq on each pX,θq. As in Wang and Chen (2009), it requires that κ Ñ 8

as N Ñ 8 to attain the best efficiency. To establish the convergence rate of pppy|xq, the

following conditions are required.

Condition 5. (i) The support of P̃Y covers that of PY , and (ii) the density function of

P̃Y is uniformly bounded. (iii) There exist constants B2 ą 0 and β2 ě 1 such that the true

conditional density function pY |X P Hβ2pY ˆ X , B2q. (iv) infyPY,xPX pY |Xpy|xq ą 0.

Condition 6. The pseudo-dimension of GN satisfies (i) PdimpGN q logpNq “ opNq, and

(ii) there exists a constant c3 ą 0 such that for large enough n, infpPGN
}p ´ pY |X}8 ď

c3PdimpGN q
´

β2
d`1 . (iii) There exists a positive constant M2 such that }p}8 ď M2 and

}ℓ2
i,ϕppq}8 ď M2 for i “ 1, 2 for every p P GN .

Condition 7. There exists a positive constant σg ą 0 such that Etexppλ}gpZ,θ}2q|X “

xu ă exppλσ2
gq for all 0 ď λ ď σ´2

g for each θ P Θ and x P X .

In the above conditions, Conditions 5 (i)-(ii) are regularity conditions for the auxiliary

distribution P̃Y . Conditions 5 (iii)-(iv) and Condition 6 are in analog to Conditions 3 and

4 for the density ratio estimation, respectively, requiring that the true conditional density

function has β2-smoothness and the candidate function class has a sufficient approximation

ability. Condition 7 assumes that }gpZ,θq} is sub-Gaussian conditional on X. Though

such a condition is not required in classic GEE literature, it is required here since we need

to conduct nonparametric estimation for its conditional mean function.

To present the result on the convergence of multiple imputation estimator pmκpX,θq,

similar to (4.7) of pr, we define the empirical L2 error of pmκpX,θq as

EN p pmθq “

r
ÿ

j“1

rN´1
N
ÿ

i“1

tpmκjpXi,θq ´ m0jpXi,θqu2s1{2, (4.12)

where pmκj and m0j are the j-th component of pmκ and m0, respectively.

Theorem 4.3. Under Conditions 1, 5–7 and taking PdimpGN q “ OpN
´ d`1

2β2`d`1 q and κ Á

N , for any θ P Θ,

EN p pmθqu “ Op

ˆ

N
´

β2
2β2`d`1 log

3
2 pNq

˙

.
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The proof of the above theorem is similar to that of Theorem 4.1 and is given in Section

B.2 of the SM. It is known from Yang and Barron (1999) that the N
´

β2
2β2`d`1 rate matches

the minimax lower bound for the pd`1q-dimensional conditional mean estimation problem.

Hence, Theorem 4.3 shows that multiple imputation estimator pmκpX,θq have the merit of

being rate optimal up to the logpNq factor, while conveniently avoiding conducting infinitely

many regressions at all possible θ. The effect of d in the above rate reveals the curse of

dimensionality. However, the accommodation of flexible uses of modern machine learning

algorithms in the proposed method provides the opportunity to improve the convergence

rate since the low-dimensional structure, if the underlying distribution indeed posits, can

be adaptively learned by the DNNs, as will be shown in 5.3.

5 Empirical likelihood inference

Using the orthogonal moment function ΨpWi,θ, pηq with pηpXi,θq “ pprpXiq, pmκpXi,θqq

estimated by the methods in Section 4.1 and 4.2, respectively, the EL estimator of θ0 is

pθ “ argmax
θPΘ

LN pθq (5.1)

where LN pθq is the profile EL

LN pθq “ sup

#

N
ź

i“1

pi

ˇ

ˇ

ˇ

ˇ

pi ě 0,
N
ÿ

i“1

pi “ 1,
N
ÿ

i“1

piΨpWi,θ, pηpXi,θqq “ 0

+

. (5.2)

In the following Section 5.1, we will investigate the asymptotic distribution of the EL

estimator pθ and the inference for θ0. In Section 5.2, we will discuss the scenario where the

covariate dimension d and the parameter dimension p are allowed to grow the the increase

of the sample size.

5.1 Asymptotic results for the EL inference

In this part, we discuss the large sample properties of the EL-based estimator pθ and then

propose confidence regions for θ0 based on the EL ratio. To present the result, we define

Γ “ EtBΨpW ,θ0,η0q{Bθu, Ω “ EtΨpW ,θ0,η0qb2u, and Σ “ pΓTΩ´1Γq´1. The empirical

estimation errors EN pprq and EN p pmθq are defined in (4.7) and (4.12), respectively.

Theorem 5.1. Under Conditions 1 and 2, if the estimation errors satisfy

EN pprq ` EN p pmθq “ opp1q and EN pprqEN p pmθq “ oppN´ 1
2 q, (5.3)
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for every θ P Θ, then we have

?
Nppθ ´ θ0q

d
Ñ N p0,Σq . (5.4)

In this theorem, the requirement for the nuisance function estimation is only via their

estimation errors (5.3). Specifically, under Conditions 3–7 where r0 and pY |X have the

smoothness of β1 and β2, respectively, then (5.3) is attainable provided that

β1
2β1 ` d

`
β2

2β2 ` d ` 1
ą

1

2
, (5.5)

using the proposed divergence-based density ratio estimator pr and the multiple-imputation

estimator pmκ whose convergence rates are established in Theorem 4.1 and 4.3. It is re-

markable that the asymptotic variance of pθ reaches the semiparametric efficiency bound

established in Chen et al. (2008) for problem (2.1), meaning that it has the optimal variance

among the family of unbiased estimators for θ0. Compared with the estimators in Chen

et al. (2008), the proposed method accommodates more flexible uses of the ML methods for

the nuisance function estimation and requires milder conditions to achieve the asymptotic

normality in (5.4), as will be further discussed in Section 6.1.

Remark 1. Different from the cross-fitting adopted by Chernozhukov et al. (2018) and

Kallus et al. (2024) among many others in the recent literature of semiparametric inference

with machine learning methods, our theoretical results do not necessarily require the sample

splitting procedure. It is noted that the sample splitting may alleviate potential overfitting

problems and under some conditions may lead to faster convergence of the reminder terms

as shown in Newey and Robins (2018). However, due to the heavy computational cost of

the cross-fitting, we do not consider such a procedure in this study. Moreover, the reduced

sample size caused by the sample splitting may deteriorate the empirical performance of

the ML-based estimation, especially when the original sample size is not sufficiently large.

Detailed comparisons for the proposed whole sample and the cross-fitting methods are of

future interest.

We next consider the inference for θ0. Let the log EL ratio be ℓN pθq “ ´ logtLN pθq{N´Nu

for every θ P Θ, and let RN pθ0q “ 2ℓN pθ0q ´ 2ℓN ppθq. The next theorem shows that the

RN pθ0q converges to a standard χ2 distribution.

Theorem 5.2. Under the same conditions as in Theorem 5.1, as N Ñ 8,

RN pθ0q
d

Ñ χ2
r .

The central χ2 distribution in Theorem 5.2 brings convenience for the inference of θ.

Different from other methods such as the Wald-type inference and the GMM, we do not
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require the estimation of the asymptotic variance of pθ due to the self-normalization of the

EL. Theorem 5.2 is often referred to as Wilks’s theorem, as one of the most prominent

benefits of the EL-based inference for the GEEs (Qin and Lawless, 1994). However, with

the presence of nuisance functions, the log EL ratio no longer necessarily converges weakly

to a central χ2 distribution but may be a weighted sum of χ2 distributions, whose critical

values require Bootstrap to approximate, as demonstrated in Wang and Chen (2009) and

Hjort et al. (2009). Due to the orthogonal estimating function, our method overcomes such

a situation and restores Wilks’s theorem of the log EL ratio, despite the involvement of two

nuisance functions.

5.2 Circumventing the curse of dimensionality

In various modern scientific tasks, the dimension d of the covariate can be very large. In this

part, we consider the inference for θ with the presence of a high dimensional covariate. It is

known that the increase in dimensionality deteriorates the convergence rates of estimators

(Stone, 1982). Recently, it has been investigated that the DNNs can adaptively approxi-

mate high-dimensional functions with low-dimensional structures (Jiao et al., 2023). There

have been increasing studies indicating that high-dimensional data tend to be supported

on some low-dimensional manifolds in many applications, such as image analysis and nat-

ural language processing (Goodfellow et al., 2016). Therefore, we consider the following

approximate manifold support condition.

Condition 8 (Approximate manifold support). The covariate distributions PX andQX are

concentrated on Mρ, a ρ-neighborhood of M Ă X , where M is a compact dM-dimensional

Riemannian manifold (Lee, 2006) andMρ “ tx P X : inft}x´y}2 : y P Mu ď ρu, ρ P p0, 1q.

In the above condition, the dimension dM of the manifold M can be regarded as an

intrinsic dimension of the covariate. Throughout this section, we allow the nominal di-

mension d to diverge with the sample size, while taking the intrinsic dimension dM as a

fixed constant. Jiao et al. (2023) established that the fully connected DNNs can adaptively

estimate a smooth function with the manifold assumption, hence alleviating the curse of

dimensionality. Motivated by the development, we choose the function classes FN in the

density ratio and GN in conditional density estimation as the DNNs with the ReLU acti-

vation function. The widths for FN and GN are specified as W1 and W2, and the depths

are specified as D1 and D2, respectively. Let d̃M “ OpdM logpd{δq{δ2q be an integer such

that dM ď d̃M ă d, where δ P p0, 1q is a given constant. The following theorem gives the

convergence rate of the DNN-based estimation of the nuisance functions under Condition

8.
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Theorem 5.3. Under Conditions 3–8, let the widths and depths of FN and GN be

Wi “ 114ptβiu ` 1q2d̃
tβiu`1
M and Di “ 21ptβiu ` 1q2N d̃M{2pd̃M`2βiqrlog2p8N d̃M{2pd̃M`2βiqqs,

for i “ 1 and 2. Then, the estimation errors of pr and pmθ satisfy

EN pprq “ Op

ˆ

d
1
2N

´
β1

rdM`2β1 log
1
2 pNq

˙

and

EN p pmθq “ Op

ˆ

pd ` 1q
1
2N

´
β2

p rdM`1`2β2q log
3
2 pNq

˙

, respectively.

(5.6)

The above theorem shows that the DNN-based estimation for the nuisance functions

is adaptive to the low-dimensional manifold structure, with the convergence rates depend-

ing on the intrinsic dimension d̃M and a prefactor of the rate
?
d. In comparison, the

convergence rates for pr and pmθ established in Corollary 4.1 and Theorem 4.3 without the

manifold condition are OppN
´

β1
d`2β1 q and OppN

´
β1

d`1`2β1 q, respectively, up to some logpNq

factors. Therefore, the effect of the dimensionality is substantially mitigated with the adap-

tivity of the DNN function classes to the underlying low-dimensional manifolds. Compared

with classic structural methods that pre-assume some low-dimensional structures, such as

the additive models, the DNNs can obtain considerably improved convergence rates and cir-

cumvent the curse of dimensionality without the knowledge of the specific low-dimensional

function structure.

Remark 2. Aside from the manifold assumption considered above, there are several other

low-dimensional structure conditions that the DNNs can be adaptive to. For example,

Bauer and Kohler (2019) showed if the underlying function follows the β-smooth generalized

hierarchical interaction model of the order d̃, then the estimation error of the sigmoid-

activated DNN achieves the order of OppαpdqN
´

β
rdM`2β q for some αpdq depending on d. See

also Schmidt-Hieber (2020) for similar results. However, the αpdq may depend exponentially

on d, while in (5.6) only the factors of the order
?
d are involved. Hence, we mainly consider

the manifold condition in this study.

We first discuss the inference for the fixed dimensional θ with the presence of the

covariate with a growing dimension d, namely p is a constant while d can increase with the

sample size N . Such a scenario corresponds to the parameter depending on Y but not on

X. The following theorem specifies the regime for pd, d̃M, β1, β2, Nq, where the estimator
pθ and the log EL ratio RN pθ0q have the same asymptotic distributions as those in Section

5.1.

Theorem 5.4. Under Conditions 1–8 and suppose that d “ OpNkq for some k ě 0 and

β1

2β1 ` d̃M
`

β2

2β2 ` d̃M ` 1
ą

2 ` k

4
, (5.7)
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then
?
Nppθ ´ θ0q

d
Ñ N p0,Σq and RN pθ0q

d
Ñ χ2

r as N Ñ 8.

Compared with Condition (5.5) under the fixed d and without the manifold structure,

the requirement in (5.7) replaces the d factors appeared on the denominators to the intrinsic

dimension rdM, which provides the opportunity to allow the nominal dimension d grows

with the polynomial rate of N . Chen et al. (2024) also considered a growing dimension

scenario and applied the shallow neural network for nuisance function estimation, where

the dimension was allowed to increase at the rate d “ op
a

logpNqq.

Next, we consider the case where both the dimensions of θ and X diverge, namely

p, d Ñ 8 as N Ñ 8, which implies the number of moment restrictions r Ñ 8 since it is

no less than the number of parameters p for the identification. The high dimensional EL

without the nuisance functions has been investigated by Chen et al. (2009), Hjort et al.

(2009), and Chang et al. (2015). The following extends their results to the covariate shift

setting in the presence of high dimensional nuisance functions.

Theorem 5.5. Under Conditions 1–8 and regime (5.7), if r3p2N´1 “ op1q and r3N2{α´1 “

op1q, where α ą 2 is the order of moment defined in Condition 2, then as r, p,N Ñ 8, (i)

for any un P Rp with unit L2-norm,

?
NuT

nΣ
´1ppθ ´ θ0q

d
Ñ N p0, 1q; (5.8)

(ii) the EL ratio statistic RN pθ0q satisfies

p2rq´ 1
2 tRN pθ0q ´ ru

d
Ñ N p0, 1q. (5.9)

Although the estimating function involves nuisance functions, the above asymptotic

distributions of pθ and RN pθ0q recover those in Chang et al. (2015) in the absence of the

nuisance functions, due to the Neyman-orthogonality of the construction for Ψ. As estab-

lished in Theorem 5.5 (i), the normalized EL estimator pθ remains asymptotic normal under

r3p2N´1 “ op1q and r3N2{α´1 “ op1q. The asymptotic normality (5.9) for RN pθ0q is a

natural substitute for the Wilks’ theorem with diverging r, which conveniently facilitates

the inference for θ0.

Remark 3. The above analyses are under the regime where p and r diverge at rates slower

than the sample size N . For the ultra high dimensional cases where p, r " N , one can

utilize the penalized EL approach introduced by Chang et al. (2018) and Chang et al.

(2021), while imposing sparsity structures on the model parameters.
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6 Related methods

In this section, we will discuss the distinctions of our proposed approach to some popular

methods in the missing data and causal inference literature.

6.1 Density ratio weighting estimation

In this part, we formally establish the theoretical properties of the density ratio weighting

(DRW) estimation briefly discussed in Section 3, which is employed in Chen et al. (2008)

and Chen et al. (2024) for the inference of GEEs in missing data problems.

Since the covariate shift setting PY |X “ QY |X is equivalent to the missing at random

condition, the GEE problem (2.1) is closely related to that considered in Chen et al. (2008).

By the Bayes rule, the density ratio function r0 can be expressed as

r0pxq “
fpx|δ “ 0q

fpx|δ “ 1q
“

Ppδ “ 1q

Ppδ “ 0q

Ppδ “ 0|X “ xq

1 ´ Ppδ “ 0|X “ xq
. (6.1)

Let π0pxq “ Ppδ “ 0|X “ xq, which is the propensity score function in the missing data

literature. Hence, (6.1) reveals that r0 has a one-to-one correspondence with π0. Therefore,

the DRW estimator is essentially an IPW estimator. The most important advantage of the

DRW estimator is that it does not need to estimate the conditional mean function mpX,θq.

However, unlike most classic IPW estimators, where the propensity score π0 is estimated

using the logistic or the least squares regression, in the density ratio weighting for the

covariate shift, we often directly estimate r0 instead of π0. Therefore, the results shown

for the IPW estimators may not directly hold for the DRW estimator. In the following, we

explore whether and when the DRW estimator is as efficient as the proposed method.

Suppose the density ratio estimator pr satisfies

pLN pprq ď pLN prq ` Oppϵ2N q, for all r P FN , (6.2)

where FN is the function class where the density ratio estimator is chosen from, ϵN is a

positive sequence satisfying ϵN “ opN´ 1
2 q, and the objective function pLN prq is defined as

pLN prq “
1

n

n
ÿ

i“1

ℓ1pXi, rpXiqq ´
1

m

n`m
ÿ

i“n`1

ℓ2pXi, rpXiqq,

where ℓipi “ 1, 2q are not necessarily the ℓi,ϕpi “ 1, 2q introduced in (4.5).

With an estimated prpxq, the DRW moment function for the source sample is

gdrwpZi,θ, prq “ prpXiqgpZi,θq for i “ 1, . . . , n,
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from which we can obtain an estimator of θ0 defined as

pθdrw “ argmax
θPΘ

Ldrw
n pθ, prq, (6.3)

where Ldrw
n pθ, prq is the profile EL ratio

Ldrw
n pθ, prq “ sup

#

n
ź

i“1

pi

ˇ

ˇ

ˇ

ˇ

pi ě 0,
n
ÿ

i“1

pi “ 1,
n
ÿ

i“1

pig
drwpZi,θ, prq “ 0

+

.

For a given ℓ2px, rq, we let mℓpxq “ mpx,θ0qtBℓ2px, r0q{Bru´1. The following condi-

tions are required to establish asymptotic properties of pθdrw.

Condition 9. (i) The objectives ℓ1px, rq and ℓ2px, rq are three-times continuously differen-

tiable with respect to r and infxPX Bℓipx, r0q{Br ą 0 for i “ 1, 2. (ii) The partial derivatives

satisfy Bℓ1px, rq{Br “ rpxqBℓ2px, rq{Br.

Condition 10. (i) The estimation error of pr satisfies }pr ´ r0}L2pP q “ OppδN q for some

δn “ opN´ 1
4 q. (ii) The bracketing integral (see Van der Vaart, 2000) of FN satisfies

Jr spδN ,FN , L2pP qq “ op1q. (iii) For every i “ 1, ¨ ¨ ¨ p, there exists some m̃ℓ,j P FN such

that }mℓ,jpXq ´ m̃ℓ,jpXq}L2pP q “ opN´ 1
4 q, where mℓ,jpxq is the j-th element of mℓpxq.

Condition 9 is regarding the requirements of the objective function and ensures r0 is the

solution to the population objective function. Condition 10 collects the assumptions for pr

and the function class FN to which pr belongs. Specifically, Condition 10 (i) requires the

L2-estimation error of pr to be oppN´ 1
4 q. In comparison, our result only requires the product

of the estimation errors of pr and pmθ to be oppN´ 1
2 q, achieving more robustness against the

nuisance function estimation errors. Condition 10 (ii) is a restriction for the complexity

of FN , which is needed for stochastic equicontinuity. Condition 10 (iii) assumes that each

element of mℓpxq can be approximated sufficiently well by the function class FN . It is

worth noting that such a condition implicitly brings more smoothness for the conditional

mean function mpx,θ0q. With the above conditions, the asymptotic distributions of the

DRW estimator pθdrw and the associated log EL ratio statistics Rdrw
n pθ0q can be derived.

Theorem 6.1. Under Conditions 1–3, 4. (iii), 9 , and 10, the DRW estimator pθdrw

satisfies

?
Nppθdrw ´ θ0q

d
Ñ U „ N p0,Σq , (6.4)

and the log EL ratio statistics Rdrw
n pθ0q

d
Ñ UTrEtgpZ,θ0qb2us´1U .

The theorem reveals that the DRW estimator pθdrw attains the semiparametric efficiency

bound as the proposed estimator. However, it requires more stringent conditions on both
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the density ratio estimation error and the approximation ability of FN , which are not nec-

essarily needed by our method. More importantly, the limiting distribution of the log EL

ratio Rdrw
n pθ0q has a weighted χ2 limiting distribution, since the covariance of U does not

match with EtgpZ,θ0qb2u. Consequently, for the inference of θ0, the above density ratio

weighting method requires a Bootstrap procedure (Chen et al., 2024), which brings con-

siderable computation burden especially when pr is estimated with complex ML algorithms

such as the DNNs, while our proposed method can conveniently employ the Wilk’s theorem

of the EL ratio statistics.

6.2 Double machine learning methods

Our work is also closely related to the classical semiparametric estimation literature on con-

structing asymptotic normal estimators for low dimensional parameters with the presence

of infinitely dimensional nuisance functions.

Building upon the Neyman orthogonality condition, our modified moment function

shares similar spirits as the class of doubly robust estimators (Robins et al., 1994 and

Rotnitzky et al., 2012) and recently proposed double machine learning methods (Cher-

nozhukov et al., 2018). However, this study has the following important distinctions. First,

both the doubly robust and the double machine learning literature commonly deal with

linear functional estimation, such as the average treatment effect. Under such cases, the

nuisances are typically the propensity score function π0pXq “ Ppδ “ 0|Xq and the condi-

tional mean function mpXq “ EpY |Xq, which both can be easily estimated by solving a

regression problem. However, our interested GEE problem is more challenging, due to the

presence of the nuisance function mpX,θq “ EtgpZ,θq|Xu, which requires estimating for

all possible θ. Therefore, our work complements the line of research of the doubly robust

and double machine learning methods, by providing an effective approach to handle such

parameter-dependent nuisance function. Utilizing the idea of the multiple imputation, we

circumvent directly estimate mpX,θq at infinitely many θ but only requires the estimation

of the conditional density function ppy|Xq. Instead of the conventional kernel smoothings,

our novel method for the estimation ppy|Xq can employ a broad array of machine-learning

algorithms. Moreover, the sample splitting procedure required in the DML can be bypassed

in this study as discussed in Remark 1.
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7 Simulation Study

This section reports the simulation results for the proposed methods, including the density

ratio estimation, the conditional density estimation, and the inference for the GEEs.

7.1 Numerical results of density ratio estimation

In this part, we carried out simulations to evaluate the performances of the proposed density

ratio estimation and compared it with other popular density ratio estimation methods.

The covariate of source sample tXiu
n
i“1 and the target sample tXn`iu

n`m
i“1 were gener-

ated as independent copies of X0 “ pX0
1 , . . . , X

0
dqT and X1 “ pX1

1 , . . . , X
1
dqT, respectively.

The sample sizes were chosen within the range n P t1000, 2000, 5000u for the source sample

and m “ n{2 for the target sample, to accommodate the common case where the source

sample usually has more observations than the target sample. We considered two settings

for the distributions of X0 and X1, corresponding to the compact and uncompact sup-

ports, respectively. In Setting S1, tX0
i udi“1 were independent distributed as Uniformp0, 1q,

and tX1
i udi“1 were independent distributed as Betap6{5, 6{5q. In Setting S2 X0 was dis-

tributed as N p0, Idq, where Id is the d-dimensional identity matrix, andX1 was distributed

as N p0,Σdq, where Σd “ pσi,jqdˆd for σi,j “ 0.5|i´j|. The dimensions were chosen as d “ 5

and 20, respectively, to evaluate the estimation performances as the increase of the dimen-

sion.

For the proposed divergence-based density ratio (DDR) estimation, we chose the ϕ-

divergence in (4.1) as the KL-divergence and estimated r0 by

pr “ argmax
rPFN

#

1

m

n`m
ÿ

i“n`1

log prpXiqq ´
1

n

n
ÿ

i“1

rpXiq

+

.

The function class FN was chosen as the deep neural network, whose tuning parameters

were selected by the three-fold cross-validation. We chose the ReLU function as the ac-

tivation function and adopted the Adam as the optimization algorithm. For comparison,

we also estimated the density ratio function with three commonly used methods: (1) the

kernel mean matching (KMM) proposed by Gretton et al. (2009); (2) the kernel smoothing

(KS) method that first obtains the kernel smoothing density estimates p̂pxq and q̂pxq for

the source and target distributions, where the bandwidths were selected from the leave-

one-out cross validation, then taking their ratio; (3) the probabilistic classification (PC)

approach adopted by Lei and Candès (2021), which used the ratio of posterior classification

probabilities to estimate the density ratio function. Simulation results were based on 300

repetitions. The performances of the estimators were evaluated by the mean squared error
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(MSE) calculated as n´1
řn

i“1tprpXiq ´ r0pXiqu2.

Table 2. Empirical average of mean squared errors (MSE) of pr based on 300 repetitions of
the proposed divergence-based density ratio (DDR) estimation, the kernel mean matching
(KMM), the kernel smoothing (KS), and the probabilistic classification (PC) methods. The
empirical standard deviations of the MSEs are in parentheses.

Setting n
d “ 5 d “ 20

DDR KKM KS PC DDR KKM KS PC

S1

1000
0.64 0.75 0.86 0.81 0.93 1.24 1.85 1.56

(0.35) (0.29) (0.31) (0.28) (0.43) (0.52) (0.68) (0.59)

2000
0.34 0.44 0.52 0.48 0.58 0.71 1.16 0.92

(0.19) (0.15) (0.20) (0.16) (0.30) (0.25) (0.36) (0.24)

5000
0.22 0.31 0.38 0.34 0.36 0.45 0.81 0.67

(0.09) (0.11) (0.09) (0.07) (0.13) (0.15) (0.25) (0.19)

S2

1000
0.74 0.82 0.93 0.85 1.15 1.38 1.94 1.73

(0.36) (0.25) (0.30) (0.36) (0.50) (0.62) (0.71) (0.66)

2000
0.37 0.51 0.65 0.49 0.64 0.78 1.25 1.04

(0.16) (0.13) (0.22) (0.15) (0.34) (0.30) (0.41) (0.28)

5000
0.24 0.37 0.44 0.40 0.43 0.52 0.93 0.79

(0.08) (0.09) (0.13) (0.12) (0.20) (0.19) (0.28) (0.17)

As indicated in Table 2, the proposed DDR for the density ratio estimation achieved the

best finite sample performances among the two settings. The KMM using the reproducing

kernel Hilbert space had the second smallest MSE in most cases, followed by the PC method

that used the posterior classification probability to indirectly estimate the density ratio.

The conventional kernel smoothing (KS) method had the worst performances among the

four candidates. The DDR had significantly improved estimation accuracy over the other

methods especially for d “ 20, suggesting the advantage of the proposed method for the

large dimensional scenarios. On the other hand, it was noted that the standard deviations

of the DDR estimates were relatively large in some cases with small and moderate sample

sizes, which became smaller as the sample size were larger.

7.2 Numerical results of conditional density estimation

We also conducted simulations to evaluate the finite sample performance of the proposed

conditional density estimation methods in Section 4.2. The estimation was conducted

using the source sample DS , where the covariates tXiu
n
i“1 generated independently from

the Uniformp0, 1qd distribution, and the responses tYiu
n
i“1 were generated according to the

following three models:

(M1): Yi “ 0.5
řtd{2u

k“1

ř

j“2k Xj,i ´ 0.5
řtd{2u

k“1

ř

j“2k´1Xj,i ` ϵi, (7.1)

(M2): Yi “ sin
´

π
řtd{2u

k“1

ř

j“2k Xj,i

¯

` ϵi,
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(M3): Yi “ 1
´

řtd{2u

k“1

ř

j“2k Xj,i ă
řtd{2u

k“1

ř

j“2k´1Xj,i

¯

` ϵi, (7.2)

where the regression functions are linear, trigonometric, and piecewise constant, respec-

tively, and the noises tϵiu
n
i“1 were independently distributed as N p0, σ2

Xq, where σ2
X “

maxp0.5, |Xi,1|q. The dimensions were chosen as d “ 5 and 20, respectively. For the pro-

posed ratio transformed conditional density estimation (RTCDE), we chose the auxiliary

distribution P̃Y as the standard normal distribution to generate tỸiu
n
i“1 in (4.10). The

candidate function class GN was chosen as the neural network, whose width and depth

were selected from five-fold cross-validations. For comparison, we also conducted the con-

ditional kernel density estimation (KCDE), the least squares conditional density estima-

tion (LSCDE, Sugiyama et al., 2010) that uses the RKHS as its function class, and the

FlexCode (Izbicki and Lee, 2017) method, which reformulates the conditional density es-

timation as a non-parametric orthogonal series problem. The sample sizes were chosen

as n P t1000, 2000, 5000u. To measure the accuracy of the estimates, we computed the

empirical MSE n´1
řn

i“1tp̂pYi|Xiq ´ pY |XpYi,Xiqu2.

Table 3. Empirical average of mean squared errors (MSE) of the estimated conditional
density based on 300 repetitions of the proposed ratio transformed conditional density es-
timation (RTCDE), the KCDE, the LSCDE, and the FlexCode. The empirical standard
deviations of the MSEs of the 300 repetitions for each method are reported in parentheses.

Models n
d “ 5 d “ 20

RTCDE KCDE LSCDE FlexCode RTCDE KCDE LSCDE FlexCode

M1

1000
0.34 0.41 0.30 0.37 0.58 0.98 0.64 0.72

(0.13) (0.17) (0.15) (0.11) (0.30) (0.26) (0.29) (0.33)

2000
0.13 0.23 0.14 0.17 0.32 0.53 0.36 0.41

(0.08) (0.09) (0.09) (0.06) (0.12) (0.16) (0.14) (0.19)

5000
0.09 0.17 0.09 0.10 0.22 0.37 0.28 0.30

(0.05) (0.09) (0.04) (0.04) (0.13) (0.15) (0.11) (0.13)

M2

1000
0.53 0.89 0.71 0.49 0.92 1.51 1.07 0.86

(0.23) (0.30) (0.26) (0.21) (0.34) (0.50) (0.29) (0.28)

2000
0.25 0.46 0.30 0.24 0.43 0.83 0.52 0.45

(0.12) (0.18) (0.11) (0.09) (0.20) (0.24) (0.18) (0.20)

5000
0.16 0.25 0.18 0.16 0.28 0.53 0.34 0.31

(0.09) (0.11) (0.06) (0.05) (0.16) (0.19) (0.11) (0.13)

M3

1000
0.67 0.91 0.86 0.77 1.18 1.55 1.34 1.27

(0.18) (0.36) (0.31) (0.25) (0.53) (0.65) (0.42) (0.50)

2000
0.31 0.59 0.44 0.40 0.52 0.79 0.66 0.59

(0.12) (0.18) (0.13) (0.15) (0.23) (0.27) (0.19) (0.26)

5000
0.18 0.31 0.25 0.21 0.27 0.43 0.37 0.34

(0.07) (0.11) (0.09) (0.07) (0.11) (0.18) (0.13) (0.12)

Table 3 suggests that the proposed RTCDE outperformed the other three methods in

most experiments. For the small sample (n “ 1000) and low dimensional (d “ 5) scenarios,
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the LSCDE and the FlexCode had slightly smaller MSE than the RTCDE for the linear

model (M1) and trigonometric model (M2), while the RTCDE showed faster convergence

rates and had the best performances in large samples. The MSEs of the four estimators

under the M3 model were larger than those under M1 and M2 because the underlying

regression function was discontinuous, where the RTCDE still had superior performances

compared to the others under such challenging cases.

7.3 Numerical results of estimation and inference of the GEE

We now present simulation results that examine the estimation accuracy of the estimator
pθ based on the orthogonal estimating functions and the empirical coverage of the proposed

inference procedure.

For the experiment results presented below, the covariates for the source and the target

samples were generated in the same way as Setting S1 in Section 7.1, where the dimension

was d “ 5, and the responses were generated according to Model M2 in Section 7.2. The

target parameter was θ0 “ Q´1
Y p1{2q, namely the median of Y for the target distribution,

since it corresponds to a nonlinear estimating equation where the conventional AIPW can-

not apply. In Section F of the SM, we report additional simulation results for the setting

with d “ 20, and results for the inference of the mean of Y for the target distribution.

The methods for comparison included the density ratio weighting (DRW), which is

equivalent to the IPW of Chen et al. (2024), the multiple imputations (MI) proposed by

Wang and Chen (2009), the proposed method having both the density ratio weighting and

the multiple imputations with estimated nuisance functions (DRW-MI-E), the localized

debiased machine learning (LDML) introduced by Kallus et al. (2024), and the covariance

balancing (Imai and Ratkovic, 2014). The nuisance functions in the first four methods were

all estimated with the deep neural networks for comparison fairness, whose widths and

depths were chosen by the three-fold cross-validation. When using the multiple imputations,

κ “ N{2 imputations were made for each observation point. In addition, to evaluate the

effects of nuisance function estimation errors, we also considered an oracle version of the

DRW-MI, where the density ratio and the conditional density functions were used as the

true ones (DRW-MI-T). To obtain the 95% confidence intervals, we employed the Wilks

theorem for the DRW-MI-E and DRW-MI-T methods and the bootstrap approximations

for the others, since they do not admit the Wilk theorem. Alternatively, one can use

the asymptotic normality of the estimators of these four methods, where the asymptotic

variances should be estimated.

Table 4 reports the performances of the six methods based on 300 simulation replica-
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tions, where the estimation performances were measured with the empirical bias, standard

deviation, and the MSE, and the inference performances were reflected from the empirical

coverage probability and length of the confidence intervals (CI). The proposed DRW-MI-E

method improved both the estimation and coverage performances than the DRW and MI

alone, with the MSE converging to 0 and the coverage probability approaching the nominal

level of 0.95. It is worth noting that the simulation results of the DRW-MI-E were com-

parable to that of the oracle method DRW-MI-T, where the nuisance functions used the

true values, confirming the theoretical analysis that estimation for the nuisances does not

have the first-order effect on the proposed orthogonal estimating function. The LDML also

employed the same form of estimation function, while resorting to a two-step method for

the estimation of the conditional mean function, which depended on an initial estimator

and required three-fold sample splitting. As a result, its empirical performances were not as

competitive as the DRW-MI-E that used the MI for the conditional mean function estima-

tion. The CB method had the worst estimation accuracy and under-coveraged confidence

intervals, since its theories require correctly specified balancing functions, which could not

be satisfied under the nonlinear response models of the simulations.

Table 4. Empirical estimation and inference results for the median of the target population, based on 300
simulation replications. The five methods considered are the density ratio weighting (DRW), the multiple
imputations (MI), the proposed method with both the density ratio weighting and the multiple imputations
using the estimated nuisance functions (DRW-MI-E), the DRW-MI using the true nuisance functions (DRW-
MI-T), the localized double machine learning (LDML), and the covariance balancing (CB). The nominal
coverage probability of the confidence interval is 0.95.

Methods Bias Std.dev MSE Coverage Length of CI

n “ 1000

DRW -0.0282 0.1759 0.0304 0.8791 0.7216

MI -0.0256 0.1801 0.0331 0.8900 0.7404

DRW-MI-E -0.0221 0.1648 0.0275 0.9326 0.7719

DRW-MI-T -0.0194 0.1610 0.0266 0.9437 0.7805

LDML 0.0239 0.1810 0.0333 0.9048 0.7914

CB -0.0508 0.1964 0.0395 0.6612 0.8382

n “ 2000

DRW 0.0204 0.1236 0.0157 0.8920 0.5083

MI -0.0216 0.1217 0.0153 0.9138 0.4885

DRW-MI-E -0.0180 0.1139 0.0130 0.9422 0.4729

DRW-MI-T 0.0153 0.1062 0.0112 0.9540 0.4693

LDML 0.0211 0.1302 0.0173 0.8987 0.4910

CB -0.0452 0.1516 0.0236 0.6865 0.5283

n “ 5000

DRW 0.0159 0.0839 0.0073 0.9104 0.3665

MI -0.0164 0.0801 0.0067 0.9312 0.3572

DRW-MI-E -0.0135 0.0745 0.0058 0.9562 0.3691

DRW-MI-T -0.0129 0.0716 0.0052 0.9524 0.3634

LDML 0.0160 0.0848 0.0074 0.9215 0.3820

CB 0.0312 0.1209 0.0151 0.6928 0.4343
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8 Case Study

Ground level ozone (O3), as an air pollutant, has been at an elevated level across North

China (Li et al., 2019) in the last decade. In this section, we demonstrate that the proposed

method is well-suited for the transfer learning of the inference for the O3 levels.

We focus on four major cities in North China, including Beijing, Xian, Jinan, and

Taiyuan, where we used the first three cities as the source domain and Taiyuan as the

target domain. The study period was the spring (March 1 to May 31) of 2018, a season

when the ozone level is generally high. The response variable was the hourly O3 obtained

from China Meteorological Administration (CMA) monitoring sites, and the covariates

included hourly PM2.5, PM10, nitrogen dioxide (NO2), surface total solar radiation (TSR),

surface air temperature (TEMP), relative humidity (HUMI), boundary layer height (BLH),

the low (LCC), medium (MCC) and high (HCC) cloud cover percentages, as well as the

one to three hour lagged terms of the above variables, where the first three variables were

obtained from China Environmental Monitor Center sites in each city, the TSR data was

collected from CMA, and the others were from the European Center for Medium-Range

Weather Forecasts (ECMWF). We also included a DAY variable that counts for the number

of days since March 1st to reflect the increasing radiation in the spring, which is highly

statistically significant in modeling the O3 as shown in Li et al. (2021). Our goal was to

utilize the O3 observations and the covariates of the source sample to assist the inferences at

the target population of the O3 in Taiyuan. To investigate the performances of the transfer

learning methods, we assumed only the covariate variables of the target domain Taiyuan

were observable during their implementations, while the true O3 levels of the target sample

were used to evaluate the quality of the transfer learning.

Distinctions between the distributions of some key variables of the target and the source

samples are illustrated in Figure 1 of the SM, which reveals that directly using the source

samples to make inferences about the O3 of the target population would introduce biases. To

apply the proposed method, we first estimated the covariate density ratio of the two samples

and used the source sample to estimate the conditional density function. The density ratio

and the conditional density functions were estimated with the neural networks, whose

widths and heights were chosen from the five-fold cross-validation. From the estimated

conditional density function, we conducted the multiple imputations with the number of

imputations κ “ 200. Figure 1 shows the 2.5% and 97.5% empirical quantiles as well as

the empirical mean of the imputed values for O3 of the target sample. The figure shows

that most of the true O3 values of the target were located within the 95% prediction region

obtained from the multiple imputations, and the mean of the imputed values were well

approximated to the true ones. Such a result not only verifies that the conditional density
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of the target sample was similar to that of the source, but also shows that our multiple

imputation method produced high-quality surrogates for the O3 on the target domain.

Figure 1. Illustration for the results of the multiple imputations for O3 the target sample. The upper
and lower boundaries of the blue region are the 2.5% and 97.5% empirical quantiles of the 200 imputations.
The blue dotted line is the empirical mean of the imputed values. The red line indicates the true O3 levels
of the target sample.

We considered the estimation and inference for the mean and the α-quantiles (α “

25%, 50%, and 75%) of the O3 of the target domain in Taiyuan. The methods include the

multiple imputation (MI), the density ratio weighting (DRW), and the proposed method

(DRW-MI). Since the first two methods do not have Wilks’ theorem, their confidence inter-

vals (CIs) were derived by Bootstraps, where the CIs were derived based on the empirical

2.5% and 97.5% quantiles of the estimates from 200 resamplings.The CIs for the DRW-MI

were via Wilks’ theorem. As a baseline, we also considered an oracle method that used

the O3 of the target sample to conduct the inference for the four estimands, including the

mean and the three quantiles of the O3 of the target domain, where their CIs were obtained

based on the asymptotic normalities. As reported in Figure 2, the CIs of the MI method

were the largest among the four methods, indicating its being less favorable in terms of

statistical efficiency. The estimation based on the DRW had a high proportion of overes-

timates compared with the estimation using the target sample. The proposed DRW-MI

achieved the lowest bias among the three transfer learning methods, which verifies that the

estimation based on the orthogonal estimating functions that used both the DRW and the

MI can be regarded as a one-step bias correction of the DRW estimation. Moreover, the CIs

of the DRW-MI had shorter lengths than those obtained with the target O3 observations,

indicating the benefit of the TL since it utilized both the information of the source and the

target sample.
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Figure 2. Estimation and 95% confidence intervals for the mean and three quantiles of the O3 of the
target population obtained from the target sample, the multiple imputations (MI), the density ratio weighting
(DRW), and the density ratio weighting with multiple imputations (DRW-MI), respectively. As a comparison
baseline, the red dotted line indicates the estimated value of the O3 with the target sample.

(a) Mean (b) 25%-quantile (c) 50%-quantile (d) 75%-quantile

9 Discussion

This study investigates the statistical inference for general estimating equations with the

covariate shift transfer learning. Instead of the common strategy of density ratio weight-

ing, we construct an orthogonal estimating equation that is more robust against nuisance

function estimation errors. To address the challenge that the conditional mean estimat-

ing function is parameter-dependent, we adopt a multiple-imputation approach that avoids

conducting the regression at infinitely many parameters. Our estimation for the nuisance

functions accommodates flexible uses of ML algorithms. The theoretical results reveal that

the EL estimator based on the orthogonal estimating equation is semiparametric efficient.

Compared with the related literature such as Chen et al. (2024), the inference does not

require a Bootstrap procedure, as it is shown that the log El ratio restores the Wilks theo-

rem, despite the presence of nuisance functions. We also discuss the DNN-based nuisance

function estimation to alleviate the curse of dimensionality.

There are some intersting extensions that may be considered in subsequent research.

First, in this work we focus on the transfer learning under the covariate shiftInvestigation

on how to handle general distribution shift settings, such as the label shift and domain

generalization, remains an important avenue for future work. Second, the density ratio

function is required to be uniformly bounded, as a common assumption for nonparametric

estimation. However, such a condition can be violated in scenarios where the target and the

source domain have non-overlap regions, or the proportion of the target sample in the full

sample converges to 0, namely n{N Ñ 0 as N Ñ 8. Such scenarios have been considered

in studies of semi-supervised learning, such as Zhang and Bradic (2022) and Chakrabortty

et al. (2022). However, the current TL setting is more challenging due to the covariate

shift, where the density ratio function should be estimated. In addition, while we have

investigated the scenario where the dimension grows with the sample size in Section 5.2,

it does not accommodate the ultra-high dimension regimes where the dimension can be
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larger than the sample size. Extensions to the ultra-high dimensional GEEs under transfer

learning can possibly be achieved with the penalized EL established by Chang et al. (2018),

while the effect of nuisance function estimation should be carefully examined.
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Sason, I. and Verdú, S. (2016). f -divergence inequalities. IEEE Transactions on Informa-

tion Theory, 62(11):5973–6006.

Schmidt-Hieber, J. (2020). Nonparametric regression using deep neural networks with ReLU

activation function (with discussion). The Annals of Statistics, 48(4):1875 – 1921.

Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regression. The

Annals of statistics, pages 1040–1053.

Sugiyama, M., Krauledat, M., and Müller, K.-R. (2007). Covariate shift adaptation by

importance weighted cross validation. Journal of Machine Learning Research, 8(5).

Sugiyama, M., Takeuchi, I., Suzuki, T., et al. (2010). Least-squares conditional density

estimation. IEICE Transactions on Information and Systems, 93(3):583–594.

Van der Vaart, A. W. (2000). Asymptotic statistics, volume 3. Cambridge university press.

Wang, D. and Chen, S. X. (2009). Empirical likelihood for estimating equations with

missing values. The Annals of Statistics, 37(1):490 – 517.

Yang, Y. and Barron, A. (1999). Information-theoretic determination of minimax rates of

convergence. Annals of Statistics, pages 1564–1599.

Zhang, Y. and Bradic, J. (2022). High-dimensional semi-supervised learning: in search of

optimal inference of the mean. Biometrika, 109(2):387–403.

Zhuang, F., Qi, Z., Duan, K., et al. (2020). A comprehensive survey on transfer learning.

Proceedings of the IEEE, 109(1):43–76.

36



Supplemental Material for “Transfer Learning with General

Estimating Equations”

Notations Throughout the supplementary material, we use c and C with different sub-

scripts to denote generic finite positive constants and may be different in different uses. The

empirical measure is denoted as Enp¨q. We use 1pAq as the indicator function of an event A.

For any vector v “ pv1, ¨ ¨ ¨ , vdqT, let vb2 “ vvT and }v}p denote its Lp norm. For a func-

tion f : X Ñ R, its supreme is denoted by }f}8 “ supxPX fpxq, and its Lp-norm under a

distribution F that generates a random variable X is denoted by }f}LppF q “ pEF |fpXq|pq1{p

for any p ě 1. For two sequences of positive numbers tanu and tbnu, we write an À bn if

there exists a positive constant C such that an ď Cbn. Let PdimpF q be the the Pseudo

dimension (Pollard, 1990) of the function class F . The ε-covering number of the function

class F with respect to the metric d is denoted as Ndpε,Fq.

A Proofs for Section 3

A.1 Proof of Theorem 3.1

In the sequel, we use E0 and Eτ to denote the expectation under the true distribution F

and the regular parametric submodel Fτ , respectively. The density function for Fτ is

fτ pwq “ pδp1 ´ pq1´δfτ py|xq1´δqτ pxqδpτ pxq1´δ,

and the score function is given by

Sτ pwq “ p1 ´ δqSτ py|xq ` δS1
τ pxq ` p1 ´ δqS0

τ pxq,

where Sτ py|xq “ B log fτ py|xq{Bτ , S0
τ pxq “ B log pτ pxq{Bτ and S1

τ pxq “ B log qτ pxq{Bτ ,

satisfying

EτtSτ pY|Xq|Xu “ 0, EτtδS1
τ pXqu “ 0 and Eτtp1 ´ δqS0

τ pXqu “ 0. (A.1)

(i) Since Eτtg̃pW ,θ, rpFτ qqu “ 0, differentiating with respect to τ gives

B

Bτ
Eτtg̃pW ,θ, rpFτ qqu

ˇ

ˇ

ˇ

τ“0
“

B

Bτ
Eτtg̃pW ,θ, r0qu

ˇ

ˇ

ˇ

τ“0
`

B

Bτ
E0tg̃pW ,θ, rpFτ qqu

ˇ

ˇ

ˇ

τ“0
. (A.2)

Under Condition 2 and the mean-squared differentiability of the submodel Fτ , for any

θ P Θ0, the differentiation and integration operators are exchangeable (see, e.g., Ibragimov

and Has’ Minskii, 1981) and it holds that

B

Bτ
Eτtg̃pW ,θ, r0qu

ˇ

ˇ

ˇ

τ“0
“ E0tg̃pW ,θ, r0qS0pW qu. (A.3)
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We now calculate the right-hand side of (A.2).

Eτtg̃pW ,θ, rpFτ qqu “ Eτ

"

1 ´ δ

1 ´ p
gpZ,θqrpFτ q

*

“ Eτ

"

δ

p
gpZ,θq

*

.

Differentiating with respect to τ gives

B

Bτ
Eτtg̃pW ,θ, rpFτ qqu

ˇ

ˇ

ˇ

τ“0
“

B

Bτ
Eτ

"

δ

p
gpZ,θq

*

ˇ

ˇ

ˇ

τ“0

“ E0

"

δ

p
gpZ,θqS0pW q

*

“ E0

"

δ

p
gpZ,θqS0pXq `

δ

p
gpZ,θqS0pY|Xq

*

“ E0

"

δ

p
m0pX,θqS0pW q

*

` E0 tg̃pW ,θ, r0qS0pY|Xqu ,

(A.4)

where the first term of (A.4) is from (A.1) and iterated expectation. We proceed to find a

function hpW q such that the second term is equivalent to E0thpW qS0pW qu. Note that

E0 tg̃pW ,θ, r0qS0pY|Xqu “ E0 rg̃pW ,θ, r0qtS0pW q ´ p1 ´ δqS0pXqus

“ E0 tg̃pW ,θ, r0qS0pW qu ´ E0 tg̃pW ,θ, r0qS0pXqu ,

and the second term is equivalent to

E0 tg̃pW ,θ, r0qS0pXqu “ E
"

1 ´ δ

1 ´ p
r0pXqm0pX,θqS0pXq

*

“ E
"

1 ´ δ

1 ´ p
r0pXqm0pX,θqS0pW q

*

,

(A.5)

where the first equality is by the iterated expectation, and the second equality is because

of (A.1). Combining (A.2)-(A.5) gives

B

Bτ
E0tg̃pW ,θ, rpFτ qqu

ˇ

ˇ

ˇ

τ“0
“ E0 tφpW ,θ,η0qS0pW qu ,

where η0pxq “ pr0pxq,m0pxqq and

φpw,θ,ηq “
δ

p
mpx,θq ´

1 ´ δ

1 ´ p
rpxqmpx,θq,

It is straightforward to see that E0tφpw,θ,η0qu “ 0 for any θ P Θ0. In addition, because

the set of score functions is dense in L2pF q, the influence function φ is uniquely determined.

(ii) Let Ψpw,θ,ηq “ g̃pw,θ, rq ` φpw,θ,ηq. Since E0tφpw,θ,η0qu “ 0, replacing F by

Fτ gives Eτtφpw,θ,ηpFτ qqu “ 0. Differentiating this identity with respect to τ “ 0 gives

0 “
B

Bτ
Eτtφpw,θ,ηpFτ qqu

ˇ

ˇ

ˇ

τ“0

2



“
B

Bτ
Eτ tφpW ,θ,η0qu `

B

Bτ
E0tφpw,θ,ηpFτ qqu (A.6)

“ E0 tφpW ,θ,η0qS0pW qu `
B

Bτ
E0tφpw,θ,ηpFτ qqu

“
B

Bτ
E0tg̃pW ,θ, rpFτ qqu

ˇ

ˇ

ˇ

τ“0
`

B

Bτ
E0tφpw,θ,ηpFτ qqu

ˇ

ˇ

ˇ

τ“0
(A.7)

“
B

Bτ
E0tΨpW ,θ,ηpFτ qqu

ˇ

ˇ

ˇ

τ“0
,

where (A.6) is from differentiation by parts and (A.7) is from the result in (i).

(iii) First, Ψ can be rewritten as

Ψpw,θ,ηq “
δ

p
gpz,θq `

"

1 ´ δ

1 ´ p
rpxq ´

δ

p

*

tgpz,θq ´ mpx,θqu.

Because EF tδgpZ,θ0qu “ 0, we have

EF tΨpW ,θ0,ηqu “ EF

„"

1 ´ δ

1 ´ p
rpXq ´

δ

p

*

tgpz,θq ´ mpX,θqu

ȷ

“ EF

„"

1 ´ δ

1 ´ p
rpXq ´

δ

p

*

tm0pX,θq ´ mpX,θqu

ȷ

,

implying that EF tΨpW ,θ0,ηqu “ 0 if either rpxq
a.e.
“ r0pxq or mpx,θ0q

a.e.
“ m0px,θ0q.

Let ∆px,θq “ m0px,θq ´mpx,θq “ p∆1, . . . ,∆rqT. Since EF rtp1´pq´1p1´ δqr0pXq ´

p´1δu∆pX,θqs “ 0, we have

|EF tΨjpW ,θ0,ηqu| “

ˇ

ˇ

ˇ

ˇ

EF

„"

1 ´ δ

1 ´ p
r0pXq ´

1 ´ δ

1 ´ p
rpXq

*

∆jpX,θ0q

ȷˇ

ˇ

ˇ

ˇ

“ |EP rtr0pXq ´ rpXqu∆jpX,θ0qs|

ď EP t|r0pXq ´ rpXq||∆jpX,θ0q|u

ď }r ´ r0}L2pPXq}mjp¨,θ0q ´ m0jp¨,θ0q}L2pPXq, (A.8)

which completes the proof.

B Proofs for Section 4

B.1 Proof of Lemma 4.1

According to Fenchel dual representation (Rockafellar, 1997), each convex ϕ can be ex-

pressed by:

ϕpuq “ sup
vPR

tuv ´ ϕ˚pvqu.

By the definition of DϕpQ}P q, we have

DϕpQ}P q “

ż

ϕ

ˆ

q0pxq

p0pxq

˙

p0pxqdx

3



“

ż

sup
vpxq

ˆ

vpxq
q0pxq

p0pxq
´ ϕ˚pvpxqq

˙

p0pxqdx

“ sup
v

ż

tvpxqq0pxq ´ ϕ˚pvpxqqp0pxqudx

ě sup
v

EQtvpXqu ´ EP tϕ˚pvpXqqu,

where the supremum in the last two equality is taken over all measurable functions from

X Ñ dompϕ˚q. Since for each fixed x in the third equality, vpxqq0pxq ´ ϕ˚pvpxqqp0pxq is

maximized at v˚pxq “ ϕ´1
˚ pq0pxq{p0pxqq “ ϕ´1

˚ pr0pxqq. By the convex duality theorem, we

have v˚pxq “ ϕ1pr0pxqq. Therefore,

ϕ1pr0q “ argmax
v

rEQtvpXqu ´ EP tϕ˚pvpXqqus,

which implies that

r0 “ argmin
r

rEP tℓ1,ϕprq ´ EQtℓ2,ϕprquus,

where the argmin is taken over all nonnegative functions with the domain X .

B.2 Proof of Theorem 4.1

Our proof proceeds in several steps. In Step 1, we present an error decomposition for

}pr´r0}2L2pP q
. In Steps 2 - 4, we investigate the deviations between the sample and population

excess risks via empirical process theories. Finally, we bound the empirical estimation error

by the L2 error in Step 5. Throughout the proof, we assume M1 ě B1 without loss of

generality. For any r P FN , we define its empirical error as }r ´ r0}2n “ 1
n

řn
i“1prpXiq ´

r0pXiqq2.

Step 1: Error decomposition. Denote ℓ1pr,xq “ ϕ˚ tϕ1prpxqqu , ℓ2pr,xq “ ´ϕ1prpxqq.

Let L1prq “ EP tℓ1pr,Xqu, L2prq “ EQ tℓ2pr,Xqu, and pL1prq “ n´1
řn

i“1 ℓ1pr,Xiq, pL2prq “

m´1
řn`m

i“n`1 ℓ2pr,Xiq. The population and the sample criterion function are:

Lprq :“ L1prq ` L1prq and pLprq :“ pL1prq ` pL2prq.

For any r1, r2 : X Ñ r0,8q, let

dϕpr1, r2q :“ Lϕpr1q ´ Lϕpr2q and pdϕpr1, r2q “ pLϕpr1q ´ pLϕpr2q.

Given a function class FN , we define the best approximation for r0 realized by FN and the

corresponding approximation error as:

rN :“ argmin
rPFN

}r ´ r0}8 and εN :“ }rN ´ r0}8.

Note that rN and εN are both deterministic and depend only on the architecture of FN

and the target function r0.

4



By the compactness of X and Condition 4, it can be shown that there exists a positive

constant L, such that for every r, r1 P FN ,

|ℓipr,xq ´ ℓipr
1,xq| ď L|rpxq ´ r1pxq|, pi “ 1, 2q,

for all x P X , and there exists positive constants c1 and c2 such that

c1}pr ´ r0}2L2pP q ď Liprq ´ Lipr0q ď c2}pr ´ r0}2L2pP q, pi “ 1, 2q, .

Therefore, we have the following error decomposition:

c1}pr ´ r0}2L2pP q ďdϕ ppr, r0q “ dϕ ppr, rN q ` dϕ prN , r0q ď dϕ ppr, rN q ` c2ε
2
N . (B.1)

We next bound dϕ ppr, rN q by analyzing the process suprPFN
|dϕ pr, rN q ´ pdϕ pr, rN q |,

mainly based on techniques of the local Rademacher complexity analysis of empirical risk

minimization (Bartlett et al., 2005 and Koltchinskii, 2011). First, we introduce some quan-

tities that are necessary in this approach. Let tεiu
n`m
i“1 be i.i.d symmetric, t´1, 1u-valued

random variables that are independent of tXiu
n`m
i“1 . For any function class F , we define

RnpFq :“ sup
fPF

1

n

n
ÿ

i“1

εifpXiq, RmpFq :“ sup
fPF

1

m

n`m
ÿ

i“n`1

εifpXiq.

The Rademacher complexities are defined as sRnpFq “ E tRnpFqu and sRmpFq “ E tRmpFqu,

where the expectations are taken over both the Xis and the εis. The empirical Rademacher

complexities, which are conditioned on the data, are denoted by pRnpFq “ Eε tRnpFqu and
pRmpFq “ Eε tRmpFqu. For the candidate function class FN , let the shifted (centered)

function class be

F˚
N :“ tr ´ rN : r P FNu .

The population version of the localized Rademacher complexities are defined as:

sRnpδ,F˚
N q :“ sRn

␣

f : f P F˚
N and }f}L2pP q ď δ

(

and sRmpδ,F˚
N q :“ sRm

␣

f : f P F˚
N and }f}L2pQq ď δ

(

,

where δ ą 0 is a localization scale. Similarly, the empirical localized Rademacher complex-

ities are defined as:

pRnpδ,F˚
N q :“ pRn tf : f P F˚

N and }f}n ď δu and pRmpδ,F˚
N q :“ pRm tf : f P F˚

N and }f}m ď δu .

A crucial parameter in the localized Rademacher complexity approach is the critical radius,

which is defined as δn and δm that satisfy the following inequalities:

δ2n ě sRnpδn,F˚
N q, δ2m ě sRmpδm,F˚

N q. (B.2)

For j “ 1 and 2, denote the supreme deviations between pLjprq ´ pLjpr0q and Ljprq ´Ljpr0q

restricted in the localized ball centered at r0 with the radius s as

λj
N psq “ sup

}r´rN }L2pP qďs

∣∣∣´ pLjprq ´ pLjprN q

¯

´ pLjprq ´ LjprN qq ,
∣∣∣ (B.3)
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and denote the supreme deviations between dϕpr, rN q and pdϕpr, rN q restricted in dϕpr, rN q

as

λN psq “ sup
}r´rN }L2pP qďs

∣∣∣pdϕpr, rN q ´ dϕpr, rN q

∣∣∣ , (B.4)

where s ą 0 is a radius to be varied.

Step 2. Tail bound of λN psq . We first estimate an upper bound of the expectation of

λN psq for the s in the range rδn _ δm,8q. Let

Gj
N psq “

␣

g : g “ ℓjprq ´ ℓjpr0q for r P FN and dϕpr, r0q ď s2
(

for j “ 1 and 2. Then by standard symmetrization arguments, we have

E
␣

λ1
N psq

(

ď 2 sRn

␣

G1
N psq

(

and E
␣

λ2
N psq

(

ď 2 sRm

␣

G2
N psq

(

. (B.5)

Since both ϕ˚ ˝ϕ1 and ϕ1 are L-Lipschitz continuous, by the Ledoux-Talagrand contraction

inequality due to Ledoux and Talagrand (1991), it holds that sRn

␣

G1
N psq

(

ď 2L sRnps,F˚
N q

and sRm

␣

G2
N psq

(

ď 2L sRmps,F˚
N q. Therefore,

E
␣

λ1
N psq

(

ď 4L sRnps,F˚
N q and E

␣

λ2
N psq

(

ď 4L sRmps,F˚
N q.

Since F˚
N is star-shaped around rN (if r P F˚

N , then for any α P p0, 1q, αr P F˚
N ), the function

sRnps,F˚
N q{s is non-increasing with resepct to s according to Lemma 13.6 of Wainwright

(2019). As s ą δn and δ2n ą sRn tδn,F˚
Nu, it holds that sRnps,F˚

N q ď sδn. Similarly, we also

have sRmps,F˚
N q ď sδm for s ě δm , which delivers the upper bounds

E
␣

λ1
N psq

(

ď 4Lsδn and E
␣

λ2
N psq

(

ď 4Lsδm p@s ě δn _ δmq. (B.6)

We next bound the deviation between λj
N psq and E

!

λj
N psq

)

for j “ 1 and 2. Note

that for any r P FN , we have }ℓjprq ´ ℓjprN q}8 ď L}r ´ rN}8 ď 2M1L, by the Lipschitz

condition of ϕ˚ ˝ ϕ1 and ϕ1 and the boundness of r P FN . In addition, the variance of

ℓjprq ´ ℓjprN q can be upper bounded by

Varpℓjprq ´ ℓjprN qq ďE
␣

pℓjprq ´ ℓjprN qq2
(

ďL2
´

}r ´ rN}2L2pP q ` }r ´ rN}2L2pQq

¯

ď2pM1Lq2}r ´ rN}2L2pP q ď 2pM1Lsq2, (B.7)

where the second inequality is implied by the Lipschitz condition, the third inequality is

due to }f}2L2pQq
“ }f ¨ r0}2L2pP q

ď B2}f}2L2pP q
for any f : X Ñ R, and the last inequality is

because of the localization condition }r ´ rN}L2pP q À dϕpr, rN q ď s. Consequently, for any

u ą 0 it holds that

P
!

λj
N psq ě Etλj

N psqu ` u
)

ď2 exp

ˆ

´pn ^ mqu2

8eVarpℓϕprq ´ ℓϕpr0qq ` 8M1Lu

˙

6



ď2 exp

ˆ

´
Ctpn ^ mqu2

pM1Lsq2 ` M1Lu

˙

,

for some universal constant Ct ą 0, by applying Talagrand’s concerntration equality (Ta-

lagrand, 1994) and (B.7). Therefore, we have

`

P
␣

λ1
N psq ě 4Lsδn ` u

(

_ P
␣

λ2
N psq ě 4Lsδm ` u

(˘

ď 2 exp

ˆ

´
Ctpn ^ mqu2

pM1Lsq2 ` M1Lu

˙

,

for any s ě pδn _ δmq and u ą 0. Since

λN psq ď λ1
N psq ` λ2

N psq

for any s ě 0, we have

P tλN psq ě 4Lspδn ` δmq ` uu ď 4 exp

ˆ

´
Ctpn ^ mqu2

p2M1Lsq2 ` 2M1Lu

˙

, (B.8)

for any s ě pδn _ δmq and u ą 0. Denoting δN :“ δn ` δm and setting s “ δN , u “ M1Lδ
2
N ,

then we have

P
␣

λN pδN q ě C1δ
2
N

(

ď 4 exp
`

´C2pn ^ mqδ2N
˘

, (B.9)

where C1 “ p4 ` M1qL and C2 “ Ct{6. In addition, setting u “ M1LsδN yields

P tλN psq ě C1sδNu ď 2 exp

ˆ

´
Ctns

2δ2N
s2 ` sδN

˙

ď 4 exp
`

´C2pn ^ mqδ2N
˘

, (B.10)

for any s ě δN .

Let

A1 “

!

D r P FN : }r ´ rN}L2pP q ď δN and
∣∣∣pdϕpr, rN q ´ dϕpr, rN q

∣∣∣ ě C1δ
2
N

)

. (B.11)

Combining (B.4) with (B.9) yields that

PpA1q ď 4 exp
`

´C2pn ^ mqδ2N
˘

. (B.12)

The above tail bound (B.10) controls the largest deviation
∣∣∣pdϕpr, rN q ´ dϕpr, rN q

∣∣∣ for r

within the local ball }r ´ rN}L2pP q ď δN . It remains to estimate an tail bound of the

deviation
∣∣∣pdϕpr, rN q ´ dϕpr, rN q

∣∣∣ outside this local region. We define the following event

A2 “

!

D r P FN : }r ´ rN}L2pP q ą δN and
∣∣∣pdϕpr, rN q ´ dϕpr, rN q

∣∣∣ ě 2C1δN}r ´ rN}L2pP q

)

However, bounding PpA2q is more delicate, since the function r that satisfies the requirement

in A2 is random. In the following step, we will use a “peeling” argument to address the

problem.
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Step 3: Bound the event A2 with the peeling argument. For m P N`, we define the

events

Sm :“
␣

r P FN : 2m´1δN ă }r ´ rN}L2pP q ď 2mδN
(

.

By the boundness of r P FN , we have }r ´ rN}L2pP q ď 2M1. Hence, any r P FN X
␣

}r ´ rN}L2pP q ą δN
(

must locate in some Sm for m P JKK, where K ď 2 logpM1{δN q ` 1.

Since A2 is a subset of YK
m“1Sm, by the union bound we have PpA2q ď

řM
m“1 P pA2 X Smq.

Note that if rm P A2 X Sm, then we can take sm “ 2mδN , and rm satisfies

}rm ´ rN}L2pP q ď sm and
∣∣∣pdϕprm, r0q ´ dϕprm, r0q

∣∣∣ ě 2C1δN}r ´ rN}L2pP q ą C1δNsm,

where the last inequality is due to 2}r ´ rN}L2pP q ą 2m`1δN ą sm “ 2mδN . As a result,

A2 X Sm Ă tλN psmq ě C1smδNu . Then according to (B.10), we obtain

PpA2q ď

K
ÿ

m“1

PpA X Smq ď 2
K
ÿ

m“1

exp
`

´C2pn ^ mqδ2N
˘

ď 4 expp´C2pn ^ mqδ2N ` logKq ď 4 exp

ˆ

´
C2pn ^ mqδ2N

2

˙

, (B.13)

where the last inequality holds provided that

C2pn ^ mqδ2N
2

ě log p2 logpM1{δN q ` 1q . (B.14)

The complement of A2 is composed by Ac
2 “ B1 Y B2, where

B1 “
␣

r P FN : }r ´ rN}L2pP q ď δN
(

and B2 “

!

r P FN :
∣∣∣pdϕpr, rN q ´ dϕpr, rN q

∣∣∣ ă 2C1δN}r ´ rN}L2pP q

)

.

Therefore, (B.13) implies that

PpB1 Y B2q ě 1 ´ 4 exp

ˆ

´
C2pn ^ mqδ2N

2

˙

.

If pr P B1, then we have dppr, rN q ď c2δ
2
N since dppr, rN q ď c2}pr ´ rN}2L2pP q

. Moreover, if

pr P B2, since c1}pr ´ rN}2L2pP q
ď dϕppr, rN q, and pdppr, rN q ď 0 by the definition of pr, we have

dϕppr, rN q ă 4c´2
1 C2

1δ
2
N . This together with (B.12) leads to

P
␣

dϕppr, rN q ă pc2 _ 4c´2
1 C2

1 qδ2N
(

ě 1 ´ 4 exp

ˆ

´
C2pn ^ mqδ2N

2

˙

. (B.15)

Let C3 “ c2 _ 4c´2
1 C2

1 and C4 “ C2{2, combining (B.1) and (B.15), we obtain

P
!

c1}pr ´ r0}2L2pP q ď C3δ
2
N ` c2ε

2
N

)

ě 1 ´ 4 exp

ˆ

´
C2pn ^ mqδ2N

2

˙

. (B.16)
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Therefore, the estimation error }pr ´ r0}L2pP q relies on the critical radius δN and the ap-

proximation error εN . In the next step, we provide an upper bound of the critical radius

δN .

Step 4: Estimation of the critical radius δN . In this step, we first estimate the

empirical critical radiuses pδn and pδm satisfying

pδ2n ě k pRnppδn,F˚
N q, pδ2m ě k pRmppδm,F˚

N q, (B.17)

where k is a fixed positive constant, pRnpδn,F˚
N q and pRnpδm,F˚

N q are localized empirical

Rademacher complexities, respectively, then use Proposition 14.25 of Wainwright (2019) to

obtain that

PpC4δn ď pδn ď C5δnq ě 1 ´ C6 expp´C7nδ
2
nq (B.18)

for some generic constants C4, ¨ ¨ ¨ , C7 ą 0.

By the Dudley’s chaining, we have

pRnps,F˚
N q ď inf

0ăαăs

"

4α `
12
?
n

ż s

α

b

log
`

N2pε,F˚
N ,Xn

1 qdε
˘

*

, (B.19)

whereXn
1 “ pX1, ¨ ¨ ¨ ,Xnq. Since for any }f}n ď max1ďiďn |fpXiq|, we haveN2pε,F˚

N ,Xn
1 q ď

N8pε,F˚
N ,Xn

1 q. Since }f}8 ď 2M for f P F˚
N , according to Theorem 12.2 of Anthony and

Bartlett (1999), we have

log pN8pε,F˚
N ,Xn

1 qq ď PdimpF˚
N q

ˆ

4eMn

εPdimpF˚
N q

˙

.

When n ą PdimpF˚
N q, let α “ s

a

PdimpF˚
N q{n in (B.19), we have

inf
0ăαăs

"

4α `
12
?
n

ż s

α

b

log
`

N2pε,F˚
N ,Xn

1 qdε
˘

*

ď 16s

d

PdimpF˚
N q

n

ˆ

log
4eM

s
`

3

2
log n

˙

.

Therefore, if s ě 1{n and n ě p4eMq2, the localized empirical Rademacher complexity can

be upper bounded by

pRnps,F˚
N q ď 32s

c

PdimpF˚
N q

n
logpnq.

With such result, we find that the pδn satisfying pδ2n ě pFnppδn,F˚
N q can be taken as

pδn “ 32k

c

PdimpF˚
N q

n
logpnq ` u “ 32k

c

PdimpFN q

n
logpnq ` u, (B.20)

for any u ě 0. The empirical critical value δ̂m can be taken similarly. Using (B.16), (B.18),

and (B.20), we obtain that for any u ě 0,

P
!

}pr ´ r0}2L2pP q ď C8

`

ξN ` ϵ2N ` u
˘

)

ě 1 ´ C9 expp´NξN ´ Nuq, (B.21)
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for some universal constants C8 and C9 ą 0, where ξN represents the stochastic error in

the estimation and is defined as

ξN “ PdimpFN q

ˆ

logpnq

n
`

logpmq

m

˙

.

SinceNξN — PdimpFN q logpNq, we have expp´NξN q ă C´1
9 for large enoughN . Therefore,

(B.21) implies that for large enough N and any t ě 0, it holds that

P
"

}pr ´ r0}2L2pP q ď C8

ˆ

ξN ` ϵ2N `
t

N

˙*

ě 1 ´ expp´tq.

Step 5: Bound the empirical error by the L2 error.

In this step, we show that with high probability, the empirical error }pr ´ r}n is at most

twice the L2 error if r is in a given neighboring ball around r0.

Let gprq “ pr ´ r0q2 for every r P FN . Then since gprq “ pr ` r0qpr ´ r0q, we have

|gprq| ď 3M1|r ´ r0| ě 9M2
1 , implying that gprq has a Lipschitz constant of 3M1, and gprq

is a bounded function. Furthermore, if r is restricted to a radius with }r ´ r0}L2pP q ď ξ for

some fixed constant ξ ą 0, then

Vartgprqu ď Etg2prqu ď Etpr ´ r0q4u ď 9M2
1 ξ

2.

By applying Theorem 2.1 of Bartlett et al. (2005), which is based on Talagrand’s concen-

tration, for every r with }r ´ r0}L2pP q ď ξ, it holds that

}r ´ r0}2n ´ }r ´ r0}L2pP q ď 3 pRnpgprq : r P FN , }r ´ r0}L2pP q ď ξq ` 3M1ξ

c

2t

n
`

12M2
1 t

n

ď 18M1
pRnpξ,F˚

N q ` 3M1ξ

c

2t

n
`

12M2
1 t

n
, (B.22)

with probability at least 1 ´ e´t where the second inequality is due to pr ´ r0q P F˚
N , the

Lipschitz continuity of gprq, and iterated expectations.

Now, suppose that the radius ξ satisfies

ξ2 ě 36M1
pRnpξ,F˚

N q, and ξ2 ě
72M2

1 t

n
, (B.23)

then (B.22) implies that with probability at least 1 ´ e´t,

}r ´ r0}2n ď ξ2{2 ` ξ2{2 ` ξ2{6 ă 2ξ2 for all r satisfies (B.23) and }r ´ r0}L2pP q ď ξ.

As shown in the calculation of the previous step, for large enough n,

ξ “ C8pξN ` ϵ2N `
t

N
q

satisfies the requirement in (B.23) for any given t ą 0. This together with Pp}r´r0}L2pP q ď

ξq ą 1´e´t implies that Pp}r´r0}2n ď ξq ą 1´2e´t, which completes the proof of Theorem

4.1.
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B.3 Proof of Theorem 4.2

We will apply Yang-Barron’s version of Fano’s method (Yang and Barron, 1999) to derive

the lower bound for the density ratio estimation.

Part 1. Let us first consider a sub-class of Mdpβ1, B1q defined by

M1 “

"

pP0,Qq : P0 is the uniform distribution , dQ{dP P Hβ1pX , B1q, inf
xPX

dQpxq ą c0 ą 0

*

.

Then for any two distinct elements pP0,Q1q and pP0,Q2q in M1, their KL-divergence

D ppP0,Q1q}pP0,Q2qq can be bounded by

D ppP0,Q1q}pP0,Q2qq “DpQ1}Q2q “

ż

xPX
log

ˆ

dQ1pxq

dQ2pxq

˙

dQ1pxq

ď

ż

xPX

ˆ

dQ1pxq

dQ2pxq
´ 1

˙

dQ1pxq “

ż

xPX

ˆ

dQ1pxq

dQ2pxq

˙2

dQ2pxq ´ 1

“

ż

xPX

ˆ

pdQ1pxq ´ dQ2pxqq

dQ2pxq

˙2

dQ2

ďc´1
0

ż

xPX
pdQ1pxq ´ dQ2pxqq

2 dx. (B.24)

The above bound together with D
`

pPbn
0 ,Qbm

1 q}pPbn
0 ,Qbm

2 q
˘

“ mDpQ1}Q2q implies

that for any ε ą 0, the ε-covering number of M1 in the square-root KL divergence has an

upper bound:

NKLpε,M1q ď NL2pµq

ˆ
c

c0
m
ε,Q1

˙

,

where Q1 is the function class of Q that is the second element of pP,Qq P M1. By definition,

we know that Q1 is a sub-class of Hβ1pX , B1q, whose covering number is known from

classical theory (see e.g., Giné and Nickl, 2021). Therefore we obtain

logNKLpε,M1q ď logNL2pµq

ˆ
c

c0
m
ε,Hβ1pX , B1q

˙

—

ˆ

B
?
m

ε

˙
d
β

. (B.25)

Applying Yang-Barron’s version of Fano’s method, we choose pεn, δnq that satisfies

ε2m ě NKLpε,M1q and logMp2δm; d,Θq ě 4ε2m ` log 2. (B.26)

Since the estimand is the density ratio function that belongs to Hβ1pX , B1q, we have

logMp2δm; d,Θq — p
1

δm
q
d
β . (B.27)

With (B.25) and (B.27), pεn, δnq that ensures (B.26) can be specified as ε2m — m
d

2β`d and

δ2m — m
´

2β1
2β1`d .
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According to Yang and Barron (1999), a minimax lower bound for the sub-class M1 is

given by

inf
pr

sup
pP,QqPM1

E}pr ´ dQ{dP}2 ě
δ2m
2

— m
´

2β1
2β1`d . (B.28)

Part 2. Let us first consider another sub-class of Mdpβ1, B1q defined by

M2 “

!

pP,Q0q : Q0 is the uniform distribution , dQ0{dP P Hβ1pX , B1q, 0 ă c1 ă dPpxq ă c2 ă 8

)

.

For any two distinct elements pP1,Q0q and pP2,Q0q in M2, with the same argument as

in (B.24), we can obtain

D ppP0,Q1q}pP0,Q2qq ď c´1
1

ż

xPX
pdP1pxq ´ dP2pxqq

2 dx.

Since dQ0pxq “ 1, we write dPipxq “ r´1
i pxq with ripxq P Hβ1pX , B1q for i “ 1, 2. Then the

above quantity can be upper bounded by

c´1
1

ż

xPX
pdP1pxq ´ dP2pxqq

2 dx “c´1
1

ż

xPX

ˆ

1

r1pxq
´

1

r2pxq

˙2

dx

ďc42c
´1
1

ż

xPX
pr1pxq ´ r2pxqq2dx. (B.29)

Therefore, the square-root covering number of M2 in KL-divergence can be upper

bounded by the covering number of Hβ1pX , B1q in the L2pµq-norm, leading to

logNKLpε,M2q ď logNL2pµq

ˆ

c

c1
c42n

ε,Hβ1pX , B1q

˙

—

ˆ

B
?
n

ε

˙
d
β

. (B.30)

for any ε ą 0. The rest procedure is similar to Part I and we omit here for simplicity. The

conclusion is for the sub-class M2, a minimiax lower bound is given by

inf
pr

sup
pP,QqPM2

E}pr ´ dQ{dP}2 ě
δ2n
2

— n
´

2β1
2β1`d . (B.31)

Since M1 and M2 are both sub-class of Mdpβ1, B1q, their minimax lower bounds are

also lower bounds of Mdpβ1, B1q. Combining the results in Part I and II, we obtain:

inf
pr

sup
pP,QqPMdpβ1,B1q

E}pr ´ dQ{dP}2Á n
´

2β1
2β1`d ` m

´
2β1

2β1`d — N
´

2β1
2β1`d , (B.32)

which completes the proof of Theorem 4.2.

B.4 Proof of Theorem 4.3
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For any given distribution P̃Y supported on R with a known density p̃0pyq, we let

P̃ “ P̃Y ˆPX be the distribution of pỸ ,Xq for X „ PX and Y „ P̃Y , which is independent

of X, and let

r̃0py,xq “
p0py,xq

p0pxqp̃0pyq
,

be the true density ratio function between P and P̃ . Then, under Conditions 5 and 6,

applying Theorem 4.2 leads to

ENtppr̃ ´ r̃0q2u “ Op

ˆ

N
´

2β2
2β2`d`1 logpNq

˙

,

for the estimator pr̃. Since p̂Y |X “ pr̃p̃Y and pY |Xpy,xq “ r̃0p̃Y , where p̃Y is a bounded

function, we have

ENtpp̂Y |X ´ pY |Xq2u “ Op

ˆ

N
´

2β2
2β2`d`1 logpNq

˙

. (B.33)

For any θ, let pmpXi,θq “
ş

gpy,Xi,θqp̂Y |Xpy|Xiqdy be the conditional mean function

with the estimated conditional density function p̂Y |X , then

ENt pmpX,θq ´ m0pX,θqu2 “
1

N

N
ÿ

i“1

EX

„
ż

gpy,Xi,θqtp̂py|Xiq ´ pY |Xpy|Xiqudy

ȷ2

.

Since there exists a constant c ą 0 such that p0py|Xq ą c, we have

"
ż

|gpy,Xi,θq||p̂Y |Xpy|Xiq ´ pY |Xpy|Xiq|dy

*2

ď c´1

"
ż

|gpy,Xi,θq||p̂Y |Xpy|Xiq ´ pY |Xpy|Xiq|

b

pY |Xpy|Xiqdy

*2

ď c´1

ż

}gpy,Xi,θq}2|p̂Y |Xpy|Xiq ´ pY |Xi
py|Xiq|2dy

ż

pY |Xpy|Xiqdy

ď c´1 log2pNq

ż

|p̂Y |Xpy|Xiq ´ pY |Xi
py|Xq|2dy`

` c´1

ż

}gpy,Xi,θq}2Ip}gpy,Xi,θq}2 ą logpNqq|p̂Y |Xpy|Xiq ´ pY |Xpy|Xiq|2dy

“: I1i ` I2i, say. (B.34)

Note that as p̂Y |Xpy|Xiq and pY |Xpy|Xiq are uniformaly bounded by a constant M ą 0,

we have

|p̂Y |Xpy|Xiq ´ pY |Xpy|Xq|2 ď 4M2 ` Mp0py|Xiq ď p4M2m´1 ` Mqp0py|Xiq. (B.35)

Hence, I2i can be bounded by

I2i “c´1

ż

}gpy,Xi,θq}2Ip}gpy,Xi,θq}2 ą logpNqq|p̂Y |Xpy|Xiq ´ pY |Xpy|Xiq|2dy

13



À

ż

}gpy,Xi,θq}2Ip}gpy,Xi,θq}2 ą logpNqqp0py|Xiqdy

À

"ˆ
ż

}gpy,Xi,θq}4p0py|Xiqdy

˙ˆ
ż

Ip}gpy,Xi,θq}2 ą logpNqqp0py|Xiqdy

˙*1{2

ÀN´1,

which implies EN pI2iq À N´1. For the I1i term, it can be seen that

EN pI1iq À log2pNqENtpp̂Y |X ´ pY |Xq2u “ Op

ˆ

N
´

2β2
2β2`d`1 log3pNq

˙

.

Hence,

ENt pmpX,θq ´ m0pX,θqu2 “ EN pI1iq ` EN pI2iq “ Op

ˆ

N
´

2β2
2β2`d`1 log3pNq

˙

,

which together with } pmκpXi,θq ´ pmpXi,θq} “ Opp1{
?
κq complete the proof of Theorem

4.3.

C Proofs for Section 5

C.1 Proof for the consistency of pθ

Given the estimated pη, for any θ, we letΨipθ, pηq “ ΨpWi,θ,ηq, pΨpθ, pηq “ N´1
řN

i“1Ψipθ, pηq,

and pΩpθ,ηq “ N´1
řN

i“1Ψipθ, pηqΨipθ, pηqT. With the EL estimator pθ, we write Ψippηq “

Ψippθ, pηq, pΨppθ, pηq “ pΨppθ, pηq, and pΩpηq “ pΩppθ,ηq.

Lemma C.1. Under Conditions 1 and 2, if the estimation errors satisfy

EN pprq ` EN p pmθq “ opp1q and EN pprqEN p pmθq “ oppN´ 1
2 q, (C.1)

then we have

1
?
N

N
ÿ

i“1

ΨpWi,θ, pηq “
1

?
N

N
ÿ

i“1

ΨpWi,θ,η0q ` opp1q. (C.2)

Proof. Note that for each i “ 1, ¨ ¨ ¨ , N ,

ΨpWi,θ, pηq ´ ΨpWi,θ,η0q “ R1,ippηq ` R2,ippηq ` R3,ippηq,

where

R1,ippηq “

"

δi
p

´
1 ´ δi
1 ´ p

r0pXiq

*

t pmpXi,θqu ´ mpXi,θqu,

R2,ippηq “
1 ´ δi
1 ´ p

tprpXiq ´ r0pXiqut pmpXi,θqu ´ mpXi,θqu,
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R3,ippηq “
1 ´ δi
1 ´ p

tprpXiq ´ r0pXiqutgpZi,θq ´ m0pXi,θqu.

Let Rjppηq “ N´ 1
2
řN

i“1Rj,ippηq for j “ 1, 2, 3. Then (C.2) can be shown if Rjppηq “ opp1q

for j “ 1, 2, 3. For the first term,

EtR2
1ppηq|tXiu

N
i“1u “ EN

«

"

δi
p

´
1 ´ δi
1 ´ p

r0pXiq

*2

t pmpXi,θqu ´ mpXi,θqu2

ff

À EN

“

t pmpXi,θqu ´ mpXi,θqu2
‰

“ EN p pmθq “ opp1q, (C.3)

where the first equality is due to

ENtR1,ippηqR1,i1ppηq|tXiu
N
i“1u “ 0,

for each i ‰ i1, by the independence of pXi, δiq and pX 1
i, δ

1
iq, and EN

!

δi
p ´

1´δi
1´p r0pXiq|Xi

)

“

0 for each 1 ď i ď N . Therefore, R1ppηq “ opp1q. For the second term, we have

R2ppηq “
?
NEN

"

1 ´ δi
1 ´ p

|prpXiq ´ r0pXiq| | pmpXi,θq ´ mpXi,θq|
*

À
?
NEN pprqEN p pmθ0q “ opp1q,

by the Cauchy-Schwarz inequality and (C.1). Finally, for the third term,

EtR2
3ppηq|tδi,Xiu

N
i“1u “ EN

„

1 ´ δi
p1 ´ pq2

tprpXiq ´ r0pXiqu2tgpZi,θ0q ´ m0pXi,θqu2|tδi,Xiu
N
i“1

ȷ

À En

“

tprpXiq ´ r0pXiqu2VarpgpZi,θq|XiquNi“1

‰

À Enpprq “ opp1q.

Therefore, we have R3ppηq “ opp1q. Since

1
?
N

N
ÿ

i“1

ΨpWi,θ, pηq ´
1

?
N

N
ÿ

i“1

ΨpWi,θ,ηq “ R1ppηq ` R2ppηq ` R3ppηq,

the proof of Lemma C.1 is finished.

Lemma C.2. Under Conditions 1 and 2, if the estimation errors satisfy

EN pprq ` EN p pmq “ opp1q and EN pprqEN p pmq “ oppN´ 1
2 q, (C.4)

then pθ “ θ0 ` opp1q.

Proof. The EL estimator pθ can be written as the solution to the saddle point problem

(Newey and Smith, 2004):

pθ “ argmin
θPΘ

sup
λPpΛN pθq

1

N

N
ÿ

i“1

ρpλTΨipθ, pηqq, (C.5)
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where ρpvq “ logp1 ` vq and pΛN pθq “ tλ : λTΨipθ, pηq P p´1,8qu. For any ξ P p1{α, 1{2q

where α is defined in Condition 2 (ii), let λ̃ “ N´ξ
pΨppθ, pηq{} pΨppθ, pηq}. By Lemma A1

of Newey and Smith (2004), maxiďN |λ̃T
pΨippηq| “ opp1q, and λ̃ P ΛN ppθq with probability

approaching 1. Thus, for any 9λ P pλ̃, 0q. Let ρk be the k-th derivative function of ρ.

Then since ρ2p0q “ ´1, with probability approaching 1 we have ρ2p 9λT
pΨippηqq ě ´Cpi “

1, ¨ ¨ ¨ , Nq for some positive constant C1. In addition, by the Cauchy-Schwarz inequality,

Condition 2 (iii), and the uniform weak law of large numbers it can easily be derived that

N´1
řN

i“1Ψipθ, pηqqb2 ď C2Ir for some positive constant C2 with probability approaching

1, meaning that the largest eigenvalue of N´1
řN

i“1Ψipθ, pηq is bounded from above with

probability approaching 1. Taking the Taylor expansion for ρpλ̃TΨippθ, pηqq at 0 gives

1

N

N
ÿ

i“1

ρpλ̃TΨippθ, pηqq “ λ̃ pΨppθ, pηq `
1

2
λ̃T

#

1

N

N
ÿ

i“1

ρ2p 9λT
pΨippθ, pηqqΨippθ, pηqqb2

+

λ̃

ě N´ξ} pΨppθ, pηq} ´
C1C2

2
}λ̃}2 ě N´ξ} pΨppθ, pηq} ´ C3N

´2ξ, (C.6)

with probability approaching 1, where C3 “ C1C2{2.

By the similar arguments as Lemma A2 of Newey and Smith (2004), it can be shown

that if for any θ̄ P Θ such that θ̄ “ θ0 ` opp1q and pΨpθ̄, pηq “ OppN´ 1
2 q, then

λ̄ “ argmax
λPpΛN pθ̄q

N´1 1

N

N
ÿ

i“1

ρpλTΨipθ̄, pηqq

exists with probability approaching 1, also it holds that

sup
λPpΛN pθ0q

1

N

N
ÿ

i“1

ρpλTΨipθ̄, pηqq “ OppN´1q, and λ̄ “ OppN´ 1
2 q. (C.7)

Setting θ̄ “ θ0. Then, according to Lemma C.1,

pΨpθ̄, pηq “ pΨpθ̄,η0q ` oppN´ 1
2 q “ OppN´ 1

2 q,

which shows that (C.7) holds with θ̄ “ θ0. Using the definition of the saddle point ppθ, λ̄q,

the inequality (C.6), and the claim (C.7) with , we have

N´ξ} pΨppθ, pηq} ´ C3N
´2ξ ď

1

N

N
ÿ

i“1

ρpλ̃TΨippθ, pηqq

ď
1

N

N
ÿ

i“1

ρppλTΨippθ, pηqq

ď sup
λPpΛN pθ0q

1

N

N
ÿ

i“1

ρpλTΨipθ0, pηqq “ OppN´1q,

(C.8)
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implying that } pΨppθ, pηq} “ OppN´1`ξq`OppN´ξq “ OppN´ξq, since ξ ă 1{2. Now, suppose

ϵN is an arbitrary sequence that converges to 0 and let λ̃ “ ϵN pΨppθ, pηq, which implies

λ̃ “ oppN´ξq. Then, similar to (C.8), we have

λ̃T} pΨppθ, pηq} ´ C3}λ̃}2 “ OppN´1q,

which implies ϵN p1 ´ C3ϵN q} pΨppθ, pηq}2 “ OppN´1q. Since 1 ´ C3ϵN “ Op1q, we have

ϵN} pΨppθ, pηq}2 “ OppN´1q for any sequence ϵN “ op1q. Then it follows that } pΨppθ, pηq} “

OppN´ 1
2 q. Similar to Lemma C.1, it implies that pΨppθ,η0q “ pΨppθ, pηq ` oppN´ 1

2 q “

OppN´ 1
2 q.

According to the uniform weak law of large numbers,

sup
θPΘ

} pΨpθ,η0q ´ Ψpθ,η0q} “ opp1q,

which together with pΨppθ,η0q “ opp1q implies Ψppθ,η0q “ opp1q. Since Ψpθ,η0q “ 0 if

and only if θ “ θ0 and Ψpθ,η0q is continuous with respect to θ, Ψppθ,η0q “ opp1q implies
pθ “ θ0 ` opp1q, which establishes the consistency of pθ.

C.2 Proof of Theorem 5.1

The saddle point ppθ, pλq to (C.5) satisfies Q1,N ppθ, pλq “ 0 and Q2,N ppθ, pλq “ 0, where

Q1,N ppθ, pλq “
1

N

N
ÿ

i“1

1

1 ` pλTΨippθ, pηq
Ψippθ, pηq, and

Q2,N ppθ, pλq “
1

N

N
ÿ

i“1

1

1 ` pλTΨippθ, pηq

˜

BΨippθ, pηq

Bθ

¸T

pλ.

By Taylor expansion of Q1,N ppθ, pλq “ 0 and Q2,N ppθ, pλq “ 0 around pθ0, 0q, we have

0 “ Q1,npθ0, 0q `
BQ1,N pθ0, 0q

Bθ
ppθ ´ θ0q `

BQ1,N pθ0, 0q

Bλ
pλ ` oppδN q, and

0 “ Q2,npθ0, 0q `
BQ2,N pθ0, 0q

Bθ
ppθ ´ θ0q `

BQ2,N pθ0, 0q

Bλ
pλ ` oppδN q,

where δN “ }pθ ´ θ0} ` }pλ}, leading to

˜

λ̂
pθ ´ θ0

¸

“ S´1
N

˜

´Q1,N pθ0, 0q ` oppδN q

´Q2,N pθ0, 0qoppδN q

¸

“ S´1
N

˜

´Q1,N pθ0, 0q ` oppδN q

oppδN q

¸

, (C.9)

where

SN “

˜

BQ1,N pθ0,0q

Bλ
BQ1,N pθ0,0q

Bθ
BQ2,N pθ0,0q

Bλ
BQ2,N pθ0,0q

Bθ

¸

,
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and the partial derivatives are

BQ1,N pθ0, 0q

Bθ
“

1

N

N
ÿ

i“1

BΨipθ0, pηq

Bθ
,

BQ1,N pθ0, 0q

Bλ
“ ´

1

N

N
ÿ

i“1

Ψipθ0, pηqb2,

BQ2,N pθ0, 0q

Bθ
“ 0,

BQ2,N pθ0, 0q

Bλ
“

1

N

N
ÿ

i“1

ˆ

BΨipθ0, pηq

Bθ

˙T

.

Using the dominated convergence theorem, we can show that } pm ´ m0} “ opp1q implies

}B pm{Bθ ´ Bm0{Bθ} “ opp1q. With the continuous mapping theorem and the law of large

numbers, we have

BQ1,N pθ0, 0q

Bθ
“ Γ ` opp1q,

BQ1,N pθ0, 0q

Bλ
“ ´Ω ` opp1q,

BQ2,N pθ0, 0q

Bθ
“ 0,

BQ2,N pθ0, 0q

Bλ
“ ΓT ` opp1q,

(C.10)

where

Γ “ E
"

BΨpW ,θ0,η0q

Bθ

*

and Ω “ E
␣

ΨpW ,θ0,η0qb2
(

.

From Lemma C.1, we have

Q1,N pθ0, 0q “
1

N

N
ÿ

i“1

ΨpWi,θ0,η0q ` oppN´ 1
2 q “ OppN´ 1

2 q, (C.11)

where the last equality is due to the CLT. Combining (C.9), (C.10), and (C.11), and using

the continuous mapping theorem, we have

˜

λ̂
pθ ´ θ0

¸

“

¨

˝

˜

´Ω Γ

ΓT 0

¸´1

` opp1q

˛

‚

˜

Q1,N pθ0, 0q ` oppδN q

oppδN q

¸

, (C.12)

assuming that the block matrix on the right-hand side is invertible. Since δN “ }pθ ´ θ0} `

}pλ}, we know that δN “ OP pN´ 1
2 q, which further implies that

?
Nppθ ´ θ0q “

␣

ΓTΩ´1Γ
(´1

ΓΩ´1
?
NQ1,N pθ0, 0q ` opp1q

d
Ñ N p0,

␣

ΓTΩ´1Γ
(´1

q,

which completes the proof of Theorem 5.1.

C.3 Proof of Theorem 5.2

Since for every θ P Θ, the optimal empirical weight pi is given by

pi “
1

N

1

1 ` λpθqTΨipθ, pηq
,
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where λpθq satisfies Q1,N pθ, λpθqq “ 0, the log EL statistics with a given θ can be written

as

ℓN pθq “ logt1 ` λpθqTΨipθ, pηqu.

With θ “ θ0, solving Q1,N pθ0, λq “ 0 gives

λpθ0q “ Ω´1Q1,N pθ0, 0q ` oppN´ 1
2 q.

Taking the expansion of ℓN pθ0q leads to

ℓN pθ0q “ ´
N

2
QT

1,N pθ0, 0qΩ´1Q1,N pθ0, 0q ` opp1q. (C.13)

Using the characteristic of pλ given in (C.12), and expanding ℓN ppθq gives

ℓN pθ0q “ ´
N

2
QT

1,N pθ0, 0qAQ1,N pθ0, 0q ` opp1q, (C.14)

where

A “ ´Ω´1tI ` ΓpΓTΩ´1Γq´1ΓTΩ´1u.

Therefore, RN pθ0q is equivalent to

RN pθ0q “ NQT
1,N pθ0, 0qpA ´ Ω´1qQ1,N pθ0, 0q ` opp1q

“ NQT
1,N pθ0, 0qΩ´1ΓpΓTΩ´1Γq´1ΓTΩ´1Q1,N pθ0, 0q ` opp1q.

Note that p´Ωq´ 1
2

?
NQ1,N pθ0, 0q weakly converges to a standard normal distribution, and

p´Ωq´ 1
2ΓpΓTΩ´1Γq´1ΓTp´Ωq´ 1

2

is symmetric and idempotent with the trace equal to r. Hence, RN pθ0q
d

Ñ χ2
r , which

completes the proof of Theorem 5.2.

C.4 Proof of Theorem 5.3

We present the proof for the density ratio estimation, since the conditional density estima-

tion can be proved similarly. Throughout this proof, we take the compact covariate domain

X “ r0, 1sd without loss of generality. The main idea for the proof, which is similar to

that of Theorem 6.1 of Jiao et al. (2023), is to project the data to a low-dimensional space,

where the DNN can be used to approximate the low-dimensional function.

Let dδ “ OpdM logpd{δq{δ2q be an integer such that dM ď dδ ă d for any δ P p0, 1q.

According to Theorem 3.1 of Baraniuk and Wakin (2009), there exists a matrix A P Rdδˆd,

which maps a manifold in Rd into a low-dimensional space Rdδ and approximately preserves

the distance. To be more specific, such the matrix A satisfies AAT “ pd{dδqIdδ , and

p1 ´ δq}x1 ´ x2}2 ď }Ax1 ´ Ax2}2 ď p1 ` δq}x1 ´ x2}2
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for every x1,x2 P Mρ. Using A as a projection operator, we have

ApMρq Ă Apr0, 1sdq Ă

«

´

d

d

dδ
,

d

d

dδ

ffdδ

.

We now show that for every a P ApMρq, there exists a unique x P Mρ such that

Ax “ a. Suppose that x1 P Mρ is another point with Ax1 “ a. Then p1 ´ δq}x ´ x1}2 ď

}Ax´Ax1}2 ď p1` δq}x´x1}2 implies that }x´x1}2 “ 0. Therefore, for any a P ApMρq,

we can define xpaq “ SAptx P Mρ,Ax “ auq, where SAp¨q is a set function that maps a set

to a unique element of this set. It can be shown that SA : ApMρq Ñ Mρ is a differentiable

function, because for every a1,a2 P ApMρq,

1

1 ` δ
}a1 ´ a2} ď }xpa1q ´ xpa2q} ď

1

1 ´ δ
}a1 ´ a2},

and the norm of the derivative of SA is in the range rp1 ` δq´1, p1 ´ δq´1s.

Given a function f0 : r0, 1sd Ñ R, with the operator xp¨q, we can define its low-

dimensional representation f̃0 : ApMρq Ñ R by

f̃0paq “ f0pxpaqq, for every a P ApMρq Ă Rdδ .

Since r0 P Hβ1pr0, 1sdB1q, we have f̃0 P HβpApMρq, B1{p1 ´ δqβ1q. Since Mρ is a compact

space and A is a linear operator, by Whitney extension theorem (Fefferman, 2006), there

exists F̃0 P Hβ1pEδ, B1{p1 ´ δqβ1q with Eδ “ r´
a

d{dδ,
a

d{dδsdδ , such that F̃0paq “ f̃0paq

for every a P ApMρq. According to Theorem 3.3 of Jiao et al. (2023), for any N,M P N`,

there exists a function f̃ : Eδ : R belongs to the DNN function class with the ReLU

activation function, whose width W “ 38ps ` 1q2ds`1
δ Jrlog2p8Jqs and depth D “ 21ps `

1q2M rlog2p8Mqs, where s “ tβ1u such that

sup
aPEδzΩpEδq

|f̃paq ´ F̃0paq| ď 36
B1

p1 ´ δqβ1
ps ` 1q2

?
dd

3s{2
δ pJMq´2β1{dδ , (C.15)

where ΩpEδq is a subset of Eδ whose Lebesgue measure is arbitrarily small, as well as

Ω :“ tx P Mρ : Ax P ΩpEδqu does.

Let f̃˚ “ f̃ ˝ A, meaning that f̃˚pxq “ f̃pAxq for every x P r0, 1sd. Then, f̃˚ is also a

DNN whose width and depth are the same as f̃ . For every x P MρzΩ and a “ Ax, by the

definition of Mρ, there exists a x̃ P Mρ such that }x̃ ´ x} ď ρ. Then,

|f̃˚pxq ´ r0pxq| ď |f̃pAxq ´ F̃0pAxq| ` |F̃0pAxq ´ F̃0pAx̃q| ` |F̃0pAx̃q ´ r0pxq|

ď 36
B1

p1 ´ δqβ1
ps ` 1q2

?
dd

3s{2
δ pJMq´2β1{dδ `

B1

1 ´ δ
}Ax ´ Ax̃} ` |r0px̃q ´ r0pxq|

ď 36
B1

p1 ´ δqβ1
ps ` 1q2

?
dd

3s{2
δ pJMq´2β1{dδ `

ρB1

1 ´ δ

a

d{dδ ` ρB1
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ď p36 ` Cρq
B1

p1 ´ δqβ1
ps ` 1q2

?
dd

3s{2
δ pJMq´2β1{dδ ,

where the second inequality is by (C.15), the smoothness of F̃0, and the definition of F̃0. The

third inequality is because }A} “
a

d{dδ and the smoothness of r0. The positive constant

Cρ is taken such that ρ ď Cρp1´δq1´βps`1q2
?
dd

3s{2
δ pJMq´2β1{dδp

a

d{dδ `1´δq´1. Since

PX is absolutely continuous with respect to the Lebesgue measure, we have

}f̃˚ ´ r0}2L2pP q ď p36 ` Cρq2
B2

1

p1 ´ δq2β1
ps ` 1q4dd3sδ pJMq´4β1{dδ . (C.16)

As shown in the proof of Theorem 4.1,

Et}pr ´ r0}2nu ď C

ˆ

PdimpFN q logpNq

N
` ϵ2N

˙

,

for some positive constant C, where ϵ2N “ inffPFN
}f̃˚ ´ r0}2L2pP q

. According to Bartlett

et al. (2019), for the DNN class FN with width W and depth D, its pseodu-dimension is

bounded by

PdimpFN q ď C1W
2D2 logpW 2Dq,

where C1 is a positive constant. The approximation error ϵ2N ď }f̃˚ ´ r0}2L2pP q
is bounded

by the right-hand side of (C.16). Therefore,

Et}pr ´ r0}2nu ď C2

ˆ

W 2D2 logpW 2Dq logpNq

N
`

B2
1

p1 ´ δq2β1
ps ` 1q4dd3sδ pJMq´4β1{dδ

˙

.

Choosing J “ 1 and M “ NDδ with Dδ “ dδ{p2pdδ ` 2β1qq leads to

Et}pr ´ r0}2nu ď C3dd
3tβ1u

δ N
´

2β1
2β1`dδ ,

where the positive constant C3 does not depend on N or d, which completes the proof.

C.5 Proof of Theorem 5.4

With our Lemma C.1 and Theorem 5.3, the proof is obtained by assigning αpkq “ 0 and

M “ 1 in Theorem 2 of Chang et al. (2015), and hence is omitted here.

D Proofs for Section 5

D.1 Proof of Theorem 6.1

Lemma D.1. Under Conditions 1–3, 4 (iii), 9, and 10,

?
NE

"

1 ´ δ

1 ´ p
prpXqmpXq

*

“
1

?
N

N
ÿ

i“1

"

δi
p
mpXiq ´

1 ´ δi
1 ´ p

r0pXiqmpXiq

*

` opp1q, (D.1)

where the expectation is taken with respect to X.
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Recall that the criterion function for the estimation of r is defined as

pLN prq “
1

N

N
ÿ

i“1

ℓpδi,Xi; rq,

where

ℓpδ,X; rq “
1 ´ δ

1 ´ p
ℓ1pX; rq ´

δ

p
ℓ2pX; rq.

The directional derivative of ℓpδ,X; rq with respect to r in the direction u P L2pP q is given

by

d

du
ℓpδ,X; rqrus :“ lim

tÑ0

ℓpδ,X; r ` tuq ´ ℓpδ,X; rq

t

“

"

1 ´ δ

1 ´ p

B

Br
ℓ1pX; rq ´

δ

p

B

Br
ℓ2pX; rq

*

upXq

“: ℓp1qpδ,X; rqupXq, say. (D.2)

According to Condition 9. (ii), we have

ℓp1qpδ,X; rq “
1 ´ δ

1 ´ p

B

Br
ℓ2pX; rqrpXq ´

δ

p

B

Br
ℓ2pX; rq.

The first-order approximation error for ℓpδ,X; r0q is denoted as

epδ,X, r ´ r0q “ ℓpδ,X; rq ´ ℓpδ,X; r0q ´
d

du
ℓpδ,X; r0qrr ´ r0s.

With the above notations, for any r P FN , it holds that

pLN prq “pLN pr0q ` tpLN prq ´ pLN pr0qu

“pLN pr0q `
1

N

N
ÿ

i“1

tℓpδi,Xi; rq ´ ℓpδi,Xi; r0qu

“pLN pr0q `
1

N

N
ÿ

i“1

"

d

dr
ℓpδi,Xi; r0qrr ´ r0s ` epδi,Xi; r ´ r0q

*

“pLN pr0q `
1

?
N

GN

ˆ

d

dr
ℓpδi,Xi; r0qrr ´ r0s

˙

`
1

N

N
ÿ

i“1

epδi,Xi; r ´ r0q, (D.3)

where the last equality is because

E
"

d

dr
ℓpδi,Xi; r0qrr ´ r0s

*

“ 0. (D.4)

We will employ the Cramer-Wald device to establish (D.1). For any v P Rp with }v} “ 1,

we define m̃v,ℓ2pxq “ mpxqTv ¨ pBℓ2px, rq{Brq´1. For any r P FN , let

r̄pr, ϵN q “ p1 ´ ϵN qr ` ϵN pr0 ` m̃v,ℓ2q
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be a local alternative value around r and

ΠFn r̄pr, ϵN q “ p1 ´ ϵN qr ` ϵN pr˚ ` m̃˚q,

where r˚ “ argminrPFN
}r´ r0}L2pF q and m̃˚ “ argminmPFN

}m´ m̃v,ℓ2}L2pF q. In the light

of Condition 10, we have ΠFn r̄pr, ϵN q P FN and

sup
rPFN

}ΠFN
r̄v,ℓ2pr, ϵN q ´ r̄v,ℓ2pr, ϵN q}L2pF q “ opϵN ¨ N´ 1

4 q. (D.5)

By substituting r with pr and ΠFn r̄ppr, ϵN q, respectively, we obtain

pLN pprq “ pLN pr0q `
1

?
N

GN

ˆ

d

dr
ℓpδi,Xi; r0qrpr ´ r0s

˙

`
1

N

N
ÿ

i“1

epδi,Xi; pr ´ r0q (D.6)

and

pLN pΠFN
r̄v,ℓ2ppr, ϵN qq “pLN pr0q `

1
?
N

GN

ˆ

d

dr
ℓpδi,Xi; r0qrΠFN

r̄v,ℓ2ppr, ϵN q ´ r0s

˙

`
1

N

N
ÿ

i“1

epδi,Xi; ΠFN
r̄v,ℓ2ppr, ϵN q ´ r0q. (D.7)

Subtracting (D.6) from (D.7) gives

pLN pprq “pLN pΠFN
r̄v,ℓ2ppr, ϵN qq `

1
?
N

GN

ˆ

d

dr
ℓpδi,Xi; r0qrpr ´ ΠFN

r̄v,ℓ2ppr, ϵN qs

˙

`
1

N

N
ÿ

i“1

tepδi,Xi; pr ´ r0q ´ epδi,Xi; ΠFN
r̄v,ℓ2ppr, ϵN q ´ r0qu . (D.8)

We will prove later in Subsection D.2 that

1

N

N
ÿ

i“1

tepδi,Xi; ΠFN
r̄v,ℓ2ppr, ϵN q ´ r0q ´ epδi,Xi; pr ´ r0qu

“ ϵN p1 ´ ϵN qE
ˆ

1 ´ δ

1 ´ p
tprpXiq ´ r0pXqumvpXiq

˙

` op

ˆ

ϵN
?
N

˙

. (D.9)

By the definition of pr, we have

pLN pprq ´ pLN pΠFN
r̄v,ℓ2ppr, ϵN qq ď Opϵ2N q,

which together with (D.8) and (D.9) yield

1
?
N

GN

ˆ

d

dr
ℓpδi,Xi; r0qrpr ´ ΠFN

r̄v,ℓ2ppr, ϵN qs

˙

´ ϵN p1 ´ ϵN qE
ˆ

1 ´ δ

1 ´ p
tprpXiq ´ r0pXqumvpXiq

˙

` op

ˆ

ϵN
?
N

˙

ď Opϵ2N q. (D.10)
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For the term GN

`

d
dr ℓpδi,Xi; r0qrpr ´ ΠFN

r̄v,ℓ2ppr, ϵN qs
˘

, we have

GN

ˆ

d

dr
ℓpδi,Xi; r0qrpr ´ ΠFN

r̄v,ℓ2ppr, ϵN qs

˙

“GN

ˆ

d

dr
ℓpδi,Xi; r0qrpr ´ r̄v,ℓ2ppr, ϵN qs

˙

` GN

ˆ

d

dr
ℓpδi,Xi; r0qrr̄v,ℓ2ppr, ϵN q ´ ΠFN

r̄v,ℓ2ppr, ϵN qs

˙

“GN

ˆ

d

dr
ℓpδi,Xi; r0qrpr ´ r̄v,ℓ2ppr, ϵN qs

˙

` oppϵN q,

where the last equality is due to (D.5) and the Chebyshev inequality. By the definition of

r̄v,ℓ2ppr, ϵN q, we have

GN

ˆ

d

dr
ℓpδi,Xi; r0qrpr ´ r̄v,ℓ2ppr, ϵN qs

˙

“ϵNGN

ˆ

d

dr
ℓpδi,Xi; r0qrpr ´ r0s

˙

´ ϵNGN

ˆ

d

dr
ℓpδi,Xi; r0qrm̃v,ℓs

˙

. (D.11)

We now show that GN

`

d
dr ℓpδi,Xi; r0qrpr ´ r0s

˘

“ opp1q. By (D.2),

d

dr
ℓpδi,Xi; r0qrpr ´ r0s “ ℓp1qpδi,Xi; r0qtprpXiq ´ r0pXiqu.

Let

F̃N “

!

ℓp1qpδ,x; r0qtrpxq ´ r0pxqu : r P FN , }r ´ r0}L2pF q ď δN

)

,

then it is evident that

logNr spϵ, F̃N , L2pF qq À logNr spϵ,FN , L2pF qq

for any ϵ ą 0. Therefore, the bracketing number of F̃N satisfies

Jr spδN , F̃N , L2pF qq “

ż δN

0

b

1 ` logNr spϵ, F̃N , L2pF qqdϵ

À

ż δN

0

b

1 ` logNr spϵ,FN , L2pF qqdϵ

“ Jr spδN ,FN , L2pF qq “ op1q

by Condition 10 (iii). Also, for every f P F̃N , it holds that }f}8 “ Op1q and }f}L2pF q “

OpδN q. By applying Lemma 3.4.2 of van der Vaart and Wellner (1996), we have

E}GN}F̃N
À Jr spδN , F̃N , L2pF qq

˜

1 `
Jr spδN , F̃N , L2pF qq

δ2N
?
N

Op1q

¸

“ op1q,

which, by the Markov inequality, implies that

sup
rPFN

GN

´

ℓp1qpδ,x; r0qtrpxq ´ r0pxqu

¯

“ opp1q, (D.12)
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meaning that

ϵNGN

ˆ

d

dr
ℓpδi,Xi; r0qrpr ´ r0s

˙

“ oppϵN q.

In addition, plugging m̃v,ℓpXiq “ mvpXiq ¨ t B
Br ℓ2pXi, r0qu´1 into the directional deriva-

tive specified in (D.2) gives

´GN

ˆ

d

dr
ℓpδi,Xi; r0qrm̃v,ℓs

˙

“
1

?
N

N
ÿ

i“1

"

δi
p
mvpXiq ´

1 ´ δi
1 ´ p

r0pXiqmvpXiq

*

.

Combining the above results gives

GN

ˆ

d

dr
ℓpδi,Xi; r0qrpr ´ ΠFN

r̄v,ℓ2ppr, ϵN qs

˙

“
ϵN

?
N

N
ÿ

i“1

"

δi
p
mvpXiq ´

1 ´ δi
1 ´ p

r0pXiqmvpXiq

*

` oppϵN q.

Therefore, multiplying the both sides of (D.10) by
?
N{ϵN leads to

1
?
N

N
ÿ

i“1

"

δi
p
mvpXiq ´

1 ´ δi
1 ´ p

r0pXiqmvpXiq

*

` oppϵN q

´
?
Np1 ´ ϵN qE

ˆ

1 ´ δ

1 ´ p
tprpXiq ´ r0pXqumvpXiq

˙

“ opp1q ` Op

ˆ

ϵN
?
N

˙

“ opp1q,

which completes the proof of Lemma D.1.

D.2 Proof of (D.9)

First, for any candidate r we can decompose epδ,X, r ´ r0q as

epδ,X, r ´ r0q

“ℓpδ,X; rq ´ ℓpδ,X; r0q ´
d

du
ℓpδ,X; r0qrr ´ r0s

“
1

2

"

1 ´ δ

1 ´ p

B2

Br2
ℓ1pX; r0q ´

δ

p

B2

Br2
ℓ2pX; r0q

*

trpXq ´ r0pXqu2 ` Rpδ,X, rq, (D.13)

where the remainder term Rpδ,X, rq is

Rpδ,X, rq “
1

2

ż rpXq

r0pXq

"

1 ´ δ

1 ´ p

B3

Br3
ℓ1pX; tq ´

δ

p

B3

Br3
ℓ2pX; tq

*

trpXq ´ tu2dt,

and the last equality of (D.13) is due to the following Taylor’s theorem

fpbq “ fpaq ` f 1paqpb ´ aq `
f2paq

2
pb ´ aq2 `

ż b

a

f3ptq

2
pb ´ tq2dt.
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Let

ℓp2qpδ,Xq :“
1 ´ δ

1 ´ p

B2

Br2
ℓ1pX; r0q ´

δ

p

B2

Br2
ℓ2pX; r0q.

Then, according to Condition 9.(i), we have

B

Br
ℓ1pX; r0q “ r0pXq

B

Br
ℓ2pX; r0q,

B2

Br2
ℓ1pX; r0q “ r0pXq

B2

Br2
ℓ2pX; r0q `

B

Br
ℓ2pX; r0q,

which implies that

ℓp2qpδ,Xq “
1 ´ δ

1 ´ p

"

r0pXq
B2

Br2
ℓ2pX; r0q `

B

Br
ℓ2pX; r0q

*

´
δ

p

B2

Br2
ℓ2pX; r0q. (D.14)

The last term in (D.8) can be written as

1

N

N
ÿ

i“1

tepδi,Xi; ΠFN
r̄v,ℓ2ppr, ϵN q ´ r0q ´ epδi,Xi; pr ´ r0qu

“
1

2N

N
ÿ

i“1

"

1 ´ δ

1 ´ p

B2

Br2
ℓ1pX; r0q ´

δ

p

B2

Br2
ℓ2pX; r0q

*

tΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r0pXiqu2

´
1

2N

N
ÿ

i“1

"

1 ´ δ

1 ´ p

B2

Br2
ℓ1pX; r0q ´

δ

p

B2

Br2
ℓ2pX; r0q

*

tprpXiq ´ r0pXiqu2

`
1

N

N
ÿ

i“1

tRpδi,Xi,ΠFN
r̄v,ℓ2ppr, ϵN qq ´ Rpδi,Xi, prqu

“:E1,N ` E2,N ` E3,N , say.

For the term tΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r0pXiqu2, we have

tΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r0pXiqu2

“tΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiq ` r̄v,ℓ2ppr, ϵN qpXiq ´ r0pXiqu2

“tΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiq ` p1 ´ ϵN qpprpXiq ´ r0pXiqq ` ϵNm̃v,ℓ2pXiqu2

“tΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiqu2 ` p1 ´ ϵN q2tprpXiq ´ r0pXiqu2 ` ϵ2Nm̃2

v,ℓ2pXiq

` 2p1 ´ ϵN qtΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiqutprpXiq ´ r0pXiqu

` 2ϵNtΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiqum̃v,ℓ2pXiq

` 2p1 ´ ϵN qϵNtprpXiq ´ r0pXiqum̃v,ℓ2pXiq. (D.15)

Using (D.15), we can decompose E1,N ` E2,N as

E1,N ` E2,N

“
1

2N

N
ÿ

i“1

ℓp2qpδi,XiqrtΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r0pXiqu2 ´ tprpXiq ´ r0pXiqu2s
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“
1

2N

N
ÿ

i“1

ℓp2qpδi,XiqtΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiqu2

`
p1 ´ ϵN q2 ´ 1

2N

N
ÿ

i“1

ℓp2qpδi,XiqtprpXiq ´ r0pXiqu2 `
ϵ2N
2N

ℓp2qpδi,Xiqm̃
2
v,ℓ2pXiq

`
1 ´ ϵN
N

N
ÿ

i“1

ℓp2qpδi,XiqtΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiqutprpXiq ´ r0pXiqu

`
ϵN
N

N
ÿ

i“1

ℓp2qpδi,XiqtΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiqum̃v,ℓ2pXiq

`
ϵN p1 ´ ϵN q

N

N
ÿ

i“1

ℓp2qpδi,XiqtprpXiq ´ r0pXiqum̃v,ℓ2pXiq

“
1

2
Erℓp2qpδi,XiqtΠFN

r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiqu2st1 ` opp1qu

`
ϵ2N ´ 2ϵN

2
Erℓp2qpδi,XiqtprpXiq ´ r0pXiqu2st1 ` opp1qu `

ϵ2N
2
Etℓp2qpδi,Xiqm̃

2
v,ℓ2pXiqut1 ` opp1qu

` p1 ´ ϵN qErℓp2qpδi,XiqtΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiqutprpXiq ´ r0pXiqust1 ` opp1qu

` ϵNEtℓp2qpδi,XiqtΠFN
r̄v,ℓ2ppr, ϵN qpXiq ´ r̄v,ℓ2ppr, ϵN qpXiqum̃v,ℓ2pXiqu

`
ϵN p1 ´ ϵN q

N

N
ÿ

i“1

ℓp2qpδi,XiqtprpXiq ´ r0pXiqum̃v,ℓ2pXiq

ďOppϵ2Nδ2N q ` OppϵNδ2N q ` Oppϵ2N q ` OppϵNδ2N q ` Oppϵ2NδN q

`
ϵN p1 ´ ϵN q

N

N
ÿ

i“1

ℓp2qpδi,XiqtprpXiq ´ r0pXiqum̃v,ℓ2pXiq, (D.16)

where the expectations are taken with respect to pδi,Xiq, and the last equality is by the

uniform boundness of ℓp2qpδ,Xq, the approximation error in (D.5), and the bounded moment

of }m̃v,ℓ2}2. For the last term in (D.16), we note that

1

N

N
ÿ

i“1

ℓp2qpδi,XiqtprpXiq ´ r0pXiqum̃v,ℓ2pXiq

“
1

?
N

GN

´

ℓp2qpδi,XiqtprpXiq ´ r0pXiqum̃v,ℓ2pXiq

¯

` E
´

ℓp2qpδi,XiqtprpXiq ´ r0pXiqum̃v,ℓ2pXiq

¯

, (D.17)

where the expectation is taken with respect to pδi,Xiq. By the stochastic equicontinuity

which can be derived with the similar arguments as for (D.12), we can obtain

GN

´

ℓp2qpδi,XiqtprpXiq ´ r0pXiqum̃v,ℓ2pXiq

¯

“ opp1q. (D.18)

In the light of (D.14) and m̃v,ℓ2pXiq “ mvpXiq ¨ t B
Br ℓ2pXi, r0qu´1, the expectation term can
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be written as

E
´

ℓp2qpδi,XiqtprpXiq ´ r0pXiqum̃v,ℓ2pXiq

¯

“E
ˆ

1 ´ δ

1 ´ p

"

r0pXq
B2

Br2
ℓ2pX; r0q `

B

Br
ℓ2pX; r0q

*

tprpXiq ´ r0pXiqumvpXiq ¨ t
B

Br
ℓ2pXi, r0qu´1

˙

´ E
"

δ

p

B2

Br2
ℓ2pX; r0qtprpXiq ´ r0pXiqumvpXiq ¨ t

B

Br
ℓ2pXi, r0qu´1

*

“E
ˆ

1 ´ δ

1 ´ p
tprpXiq ´ r0pXqumvpXiq

˙

, (D.19)

where the last equality is due to Etp1 ´ δqr0pXqfpXqu “ EtδfpXqu for any fpXq. Com-

bining (D.16), (D.17), (D.18), and (D.19), and taking the convergence rate δN “ oppN´ 1
4 q,

we obtain

E1,N ` E2,N “ ϵN p1 ´ ϵN qE
ˆ

1 ´ δ

1 ´ p
tprpXiq ´ r0pXqumvpXiq

˙

` op

ˆ

ϵN
?
N

˙

. (D.20)

For the term E3,N , we let

ℓp3qpδ,X; tq “
1 ´ δ

1 ´ p

B3

Br3
ℓ1pX; tq ´

δ

p

B3

Br3
ℓ2pX; tq.

Due to B
Br ℓ1pX, tq “ t ¨ B

Br ℓ2pX, tq imposed in Condition 9, we have

ℓp3qpδ,X; tq “
1 ´ δ

1 ´ p

"

t ¨
B3

Br3
ℓ2pX; tq `

B2

Br2
ℓ2pX; tq `

B

Br
ℓ2pX; tq

*

´
δ

p

B3

Br3
ℓ2pX; tq,

(D.21)

which is uniformly bounded by some positive constant cℓ according to Condition 9.(ii).

then E3,N can be decomposed as

E3,N “
1

N

N
ÿ

i“1

tRpδi,Xi,ΠFN
r̄v,ℓ2ppr, ϵN qq ´ Rpδi,Xi, prqu

“
1

2N

N
ÿ

i“1

ż ΠFN
r̄v,ℓ2 ppr,ϵN q

r0pXiq

ℓp3qpδi,Xi; tqtΠFN
r̄v,ℓ2ppr, ϵN q ´ tu2dt

´
1

2N

N
ÿ

i“1

ż

prpXiq

r0pXiq

ℓp3qpδi,Xi; tqtprpXiq ´ tu2dt

“
1

2N

N
ÿ

i“1

ż ΠFN
r̄v,ℓ2 ppr,ϵN q

prpXiq

ℓp3qpδi,Xi; tqtΠFN
r̄v,ℓ2ppr, ϵN q ´ tu2dt

´
1

2N

N
ÿ

i“1

ż

prpXiq

r0pXiq

ℓp3qpδi,Xi; tqrtprpXiq ´ tu2 ´ tΠFN
r̄v,ℓ2ppr, ϵN q ´ tu2sdt

“:D1,N ` D2,N , say.
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For the term D1,N , we have

2|D1,N | “
1

N

∣∣∣∣∣ N
ÿ

i“1

ż ΠFN
r̄v,ℓ2 ppr,ϵN q

prpXiq

ℓp3qpδi,Xi; tqtΠFN
r̄v,ℓ2ppr, ϵN q ´ tu2dt

∣∣∣∣∣
ď

cℓ
N

N
ÿ

i“1

∣∣∣∣∣
ż ΠFN

r̄v,ℓ2 ppr,ϵN q

prpXiq

tΠFN
r̄v,ℓ2ppr, ϵN q ´ tu2dt

∣∣∣∣∣
“

cℓ
N

N
ÿ

i“1

p1 ´ siq
∣∣tΠFN

r̄v,ℓ2ppr, ϵN q ´ prpXiqu3
∣∣ pfor some si P p0, 1qq

ď
cℓ
N

N
ÿ

i“1

|ΠFN
r̄v,ℓ2ppr, ϵN q ´ prpXiq|3

ď
2cℓ
N

N
ÿ

i“1

t|ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q|3 ` |r̄v,ℓ2ppr, ϵN q ´ prpXiq|3u,

where the first inequality is from the uniform boundness of ℓp3qpδi,Xi; tq, the second equality

is by applying the mean value theorem, and the last inequality is from the inequality

pa ` bq3 ď 2pa3 ` b3q for any positive a and b. From (D.5) it can be easily derived that

max1ďiďN |ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q| “ opp1q. For the term |r̄v,ℓ2ppr, ϵN q ´ prpXiq|, we

have

1

N

N
ÿ

i“1

|r̄v,ℓ2ppr, ϵN q ´ prpXiq| “ ϵN
1

N

N
ÿ

i“1

tprpXiq ´ r0pXiq ´ m̃v,ℓ2pXiqu “ OppϵN q, (D.22)

1

N

N
ÿ

i“1

|r̄v,ℓ2ppr, ϵN q ´ prpXiq|2 “ ϵ2N
1

N

N
ÿ

i“1

tprpXiq ´ r0pXiq ´ m̃v,ℓ2pXiqu2 “ Oppϵ2N q, (D.23)

Using Lemma 2 of Owen (1990), it holds that max1ďiďN |m̃v,ℓ2pXiq| “ opp
?
Nq, which

together with the uniform boundness of pr and r0 and ϵN “ oppN´ 1
2 q imply that

max
1ďiďN

|r̄v,ℓ2ppr, ϵN q ´ prpXiq| “ ϵN max
1ďiďN

|prpXiq ´ r0pXiq ´ m̃v,ℓ2pXiq| “ opp1q. (D.24)

Therefore, |D1,N | can be bounded by

|D1,N | ď oppϵ2Nδ2N q ` oppϵ2N q “ op

ˆ

ϵN
?
N

˙

, (D.25)

where the equality is due to ϵN “ opN´ 1
2 q and δN “ opN´ 1

4 q.

For the term D2,N , we have

2|D2,N | “
1

N

∣∣∣∣∣ N
ÿ

i“1

ż

prpXiq

r0pXiq

ℓp3qpδi,Xi; tqrtprpXiq ´ tu2 ´ tΠFN
r̄v,ℓ2ppr, ϵN q ´ tu2sdt

∣∣∣∣∣
“

1

N

∣∣∣∣∣ N
ÿ

i“1

ż

prpXiq

r0pXiq

ℓp3qpδi,Xi; tqrtprpXiq ´ ΠFN
r̄v,ℓ2ppr, ϵN qutprpXiq ` ΠFN

r̄v,ℓ2ppr, ϵN q ´ 2tusdt

∣∣∣∣∣
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ď
cℓ
N

N
ÿ

i“1

ż

prpXiq

r0pXiq

|prpXiq ´ ΠFN
r̄v,ℓ2ppr, ϵN q| |prpXiq ` ΠFN

r̄v,ℓ2ppr, ϵN q ´ 2t| dt

ď
cℓ
N

N
ÿ

i“1

t|prpXiq ´ r0pXiq| |prpXiq ´ ΠFN
r̄v,ℓ2ppr, ϵN q|

¨ |prpXiq ` ΠFN
r̄v,ℓ2ppr, ϵN q ´ 2tsiprpXiq ` p1 ´ siqr0pXiqu|u pfor some si P p0, 1qq

“
cℓ
N

N
ÿ

i“1

t|prpXiq ´ r0pXiq| |prpXiq ´ ΠFN
r̄v,ℓ2ppr, ϵN q|

¨ |ΠFN
r̄v,ℓ2ppr, ϵN q ´ prpXiq ` 2p1 ´ siqtprpXiq ´ r0pXiqu|u

ď
cℓ
N

N
ÿ

i“1

t|prpXiq ´ r0pXiq| p|ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q| ` |r̄v,ℓ2ppr, ϵN q ´ prpXiq|q

¨p|ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q| ` |r̄v,ℓ2ppr, ϵN q ´ prpXiq| ` 2 |prpXiq ´ r0pXiq|qu

“
cℓ
N

N
ÿ

i“1

|prpXiq ´ r0pXiq| |ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q|2

`
cℓ
N

N
ÿ

i“1

|prpXiq ´ r0pXiq| |ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q| |r̄v,ℓ2ppr, ϵN q ´ prpXiq|

`
2cℓ
N

N
ÿ

i“1

|prpXiq ´ r0pXiq|2 |ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q|

`
cℓ
N

N
ÿ

i“1

|prpXiq ´ r0pXiq| |r̄v,ℓ2ppr, ϵN q ´ prpXiq| |ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q|

`
cℓ
N

N
ÿ

i“1

|prpXiq ´ r0pXiq| |r̄v,ℓ2ppr, ϵN q ´ prpXiq|2

`
2cℓ
N

N
ÿ

i“1

|prpXiq ´ r0pXiq|2 |r̄v,ℓ2ppr, ϵN q ´ prpXiq| , (D.26)

where the first inequality is from the uniform boundness of ℓp3qpδi,Xi; tq and the second

inequality is by applying the mean value theorem. By the uniform boundness of pr and r0,

the approximation error in (D.5), (D.23), }pr ´ r0}L2pP q “ OppδN q, and the Cauchy-Schwarz

inequality, we can obtain

1

N

N
ÿ

i“1

|prpXiq ´ r0pXiq| |ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q|2 “ Oppϵ2Nδ2N q,

1

N

N
ÿ

i“1

|prpXiq ´ r0pXiq| |ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q| |r̄v,ℓ2ppr, ϵN q ´ prpXiq| “ Oppϵ2NδN q,

1

N

N
ÿ

i“1

|prpXiq ´ r0pXiq|2 |ΠFN
r̄v,ℓ2ppr, ϵN q ´ r̄v,ℓ2ppr, ϵN q| “ OppϵNδ2N q.
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By the uniform boundness of pr and r0, }pr ´ r0}L2pP q “ OppδN q, and (D.24), we have

1

N

N
ÿ

i“1

|prpXiq ´ r0pXiq| |r̄v,ℓ2ppr, ϵN q ´ prpXiq|2 “ Oppϵ2N q

1

N

N
ÿ

i“1

|prpXiq ´ r0pXiq|2 |r̄v,ℓ2ppr, ϵN q ´ prpXiq| “ OppϵNδ2N q,

where the second result is obtained from the Cauchy-Schwarz inequality. Collecting the

above results and plugging them into (D.26), we can bound |D2,N | by

|D2,N | ď Oppϵ2Nδ2N q ` OppϵNδ2N q ` OppϵNδ2N q ` Oppϵ2N q

“ op

ˆ

ϵN
?
N

˙

, (D.27)

where the equality is due to ϵN “ opN´ 1
2 q and δN “ oppN´ 1

4 q.

To sum up, we have shown that

E3,N “ D1,N ` D2,N “ op

ˆ

ϵN
?
N

˙

,

which together with the result for E1,N ` E2,N in (D.20) yield

1

N

N
ÿ

i“1

tepδi,Xi; ΠFN
r̄v,ℓ2ppr, ϵN q ´ r0q ´ epδi,Xi; pr ´ r0qu

“ϵN p1 ´ ϵN qE
ˆ

1 ´ δ

1 ´ p
tprpXiq ´ r0pXqumvpXiq

˙

` op

ˆ

ϵN
?
N

˙

,

which is the desired result.

31



E Additional simulation results

In this part, we report additional results of the numerical simulations, including the infer-

ence for the mean of Y of the target population with the dimension of the covariate d “ 5

in Table 1, and the inference for the mean and median Y of the target population with

d “ 10 in Table 2 and 3, respectively.

Table 1. Empirical estimation and inference results for θ “ EQpY q of the target population
with d “ 5 based on 300 simulation replications. The five methods considered are the density
ratio weighting (DRW), the multiple imputations (MI), the proposed method with both the
density ratio weighting and the multiple imputations using the estimated nuisance functions
(DRW-MI-E), the DRW-MI using the true nuisance functions (DRW-MI-T), the localized
double machine learning (LDML), and the covariance balancing (CB). The nominal coverage
probability of the confidence interval is 0.95.

Methods Bias Std.dev MSE Coverage Length of CI

n “ 1000

DRW -0.0168 0.1322 0.0175 0.9048 0.4087

MI 0.0203 0.1471 0.0217 0.8736 0.3716

DRW-MI-E -0.0135 0.1304 0.0171 0.9265 0.3824

DRW-MI-T -0.0125 0.1271 0.0163 0.9374 0.3791

LDML -0.0117 0.1426 0.0204 0.8592 0.3617

CB 0.0370 0.1683 0.0297 0.7332 0.4204

n “ 2000

DRW -0.0149 0.1006 0.0103 0.9102 0.2817

MI -0.0182 0.1120 0.0129 0.8914 0.2546

DRW-MI-E -0.0118 0.0937 0.0089 0.9350 0.2972

DRW-MI-T -0.0121 0.0922 0.0086 0.9550 0.2935

LDML 0.0130 0.1105 0.0124 0.9008 0.2780

CB 0.0302 0.1319 0.0183 0.7298 0.3064

n “ 5000

DRW 0.0105 0.0772 0.0061 0.9163 0.1708

MI -0.0127 0.0869 0.0078 0.9081 0.1665

DRW-MI-E 0.0084 0.0673 0.0046 0.9437 0.1812

DRW-MI-T -0.0081 0.0660 0.0043 0.9481 0.1845

LDML -0.0119 0.0882 0.0078 0.9083 0.1713

CB 0.0267 0.0941 0.0096 0.7510 0.1964
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Table 2. Empirical estimation and inference results for θ “ EQpY q of the target population
with d “ 20 based on 300 simulation replications. The five methods considered are the
density ratio weighting (DRW), the multiple imputations (MI), the proposed method with
both the density ratio weighting and the multiple imputations using the estimated nuisance
functions (DRW-MI-E), the DRW-MI using the true nuisance functions (DRW-MI-T), the
localized double machine learning (LDML), and the covariance balancing (CB). The nominal
coverage probability of the confidence interval is 0.95.

Methods Bias Std.dev MSE Coverage Length of CI

n “ 1000

DRW 0.0815 0.3048 0.0995 0.7296 1.1592

MI -0.0902 0.3407 0.1242 0.7381 1.2157

DRW-MI-E 0.0521 0.2485 0.0645 0.8168 0.9052

DRW-MI-T 0.0347 0.2019 0.0419 0.8477 0.8895

LDML 0.0609 0.3601 0.1334 0.7201 1.3162

CB -0.1308 0.2724 0.0864 0.5942 0.8125

n “ 2000

DRW 0.0701 0.2382 0.0616 0.7640 0.8619

MI -0.0736 0.2619 0.0631 0.7774 0.9015

DRW-MI-E -0.0452 0.1829 0.0355 0.8851 0.7824

DRW-MI-T -0.0301 0.1681 0.0291 0.9174 0.7637

LDML 0.0492 0.2128 0.0477 0.7831 0.8459

CB -0.0945 0.2209 0.0559 0.5781 0.7037

n “ 5000

DRW 0.0539 0.1839 0.0367 0.8152 0.6729

MI 0.0569 0.2007 0.0435 0.8347 0.7138

DRW-MI-E -0.0335 0.1362 0.0196 0.9214 0.6042

DRW-MI-T 0.0304 0.1120 0.0135 0.9436 0.5814

LDML 0.0369 0.1783 0.0331 0.8152 0.7221

CB -0.0901 0.1821 0.0395 0.6515 0.5981
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Table 3. Empirical estimation and inference results for θ “ Q´1
Y p1{2q of the target popula-

tion with d “ 20 based on 300 simulation replications. The five methods considered are the
density ratio weighting (DRW), the multiple imputations (MI), the proposed method with
both the density ratio weighting and the multiple imputations using the estimated nuisance
functions (DRW-MI-E), the DRW-MI using the true nuisance functions (DRW-MI-T), the
localized double machine learning (LDML), and the covariance balancing (CB). The nominal
coverage probability of the confidence interval is 0.95.

Methods Bias Std.dev MSE Coverage Length of CI

n “ 1000

DRW -0.0943 0.3420 0.1258 0.7169 1.2011

MI -0.0962 0.3541 0.1346 0.7215 1.2142

DRW-MI-E 0.0731 0.2685 0.0774 0.8280 1.0204

DRW-MI-T 0.0527 0.2301 0.0557 0.8505 0.9969

LDML -0.0693 0.3318 0.1148 0.7119 1.2650

CB -0.1436 0.2817 0.1001 0.5523 0.8856

n “ 2000

DRW 0.0815 0.2740 0.0817 0.7593 0.8619

MI -0.0856 0.2802 0.0858 0.7324 0.8242

DRW-MI-E -0.0528 0.2129 0.0481 0.8613 0.7907

DRW-MI-T 0.0493 0.1891 0.0381 0.9038 0.7741

LDML 0.0566 0.2547 0.0681 0.7918 0.8109

CB -0.1231 0.2037 0.0566 0.5390 0.7074

n “ 5000

DRW 0.0652 0.1971 0.0431 0.8098 0.6872

MI -0.0690 0.2085 0.0482 0.8209 0.7524

DRW-MI-E -0.0341 0.1381 0.0203 0.9209 0.6507

DRW-MI-T -0.0318 0.1152 0.0143 0.9367 0.5901

LDML 0.0392 0.1801 0.0339 0.8247 0.7349

CB -0.1056 0.1618 0.0373 0.5607 0.5890
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F Additional case study results

Figure 1 in the SM illustrates the distinctions between the distributions of some key vari-

ables of the target and the source samples, which reveals that directly using the source

samples to make inferences about the O3 of the target population would introduce biases.

Figure 1. Density plots for the O3 and covariate variables of the source and the target
samples.
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